skip to main content

Synthesis, Characterization of Ag2s from AgCl Waste of Argentometry Titration with Heating Temperature Variations and Its Application as a Temperature Sensor Based on Negative Temperature Coefficient (NTC)

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang 50271, Indonesia

Received: 15 Jul 2021; Revised: 22 Jul 2022; Accepted: 17 Sep 2022; Published: 30 Sep 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Synthesis of Ag2S from AgCl waste of argentometric titration with heating temperature variations as a temperature sensor has been done. This study aims to synthesize Ag2S and examine the effect of heating temperature on crystal quality and electrical characteristics as a temperature sensor based on the Negative Temperature Coefficient (NTC). Ag2S synthesis was carried out by precipitation in a water bath with various heating temperatures of 40°C, 60°C, and 80°C. The success of the synthesis was confirmed by X-Ray Diffraction (XRD) with a typical peak of 2θ from Ag2S standard at 29.07°, 31.60°, 36.97°, 37.81°, and the highest crystallinity was obtained at a heating temperature of 60°C. Meanwhile, UV-Vis Diffuse Reflectance Spectroscopy (DRS UV-Vis) showed a band gap corresponding to Ag2S (0.9-1.05 eV). Furthermore, the Ag2S powder was made into pellets and applied as a temperature sensor. Then the resistance value and the electrical characteristics of the resulting sensor were measured. The best resistance was obtained from Ag2S synthesized at a temperature of 60°C with constant (B) and sensitivity (α) values of 2974 K and −3.35%, respectively. This indicated that Ag2S had been successfully synthesized, and the best sensor quality was obtained from Ag2S heated at a temperature of 60°C.
Fulltext View|Download
Keywords: Thermistor; Negative Temperature Coefficient (NTC); Semiconductor; Ag2S; AgCl waste
Funding: Universitas Diponegoro

Article Metrics:

  1. Andrew G. Mtewa, Duncan C. Sesaazi, Senyo K. Botchie, Emanuel L. Peter, Serawit Deyno, Belay Akino Neme, Davies Mweta, Titrimetry, in: Analytical Techniques in Biosciences, Elsevier, 2022, https://doi.org/10.1016/B978-0-12-822654-4.00006-3
  2. Yao Chen, Mengjiao Xu, Jieya Wen, Yu Wan, Qingfei Zhao, Xia Cao, Yong Ding, Zhong Lin Wang, Hexing Li, Zhenfeng Bian, Selective recovery of precious metals through photocatalysis, Nature Sustainability, 4, 7, (2021), 618-626 https://doi.org/10.1038/s41893-021-00697-4
  3. S. S. Dhumure, C. D. Lokhande, Studies on the preparation and characterization of chemically deposited Ag2S films from an acidic bath, Thin Solid Films, 240, 1-2, (1994), 1-6 https://doi.org/10.1016/0040-6090(94)90685-8
  4. Minghai Chen, Lian Gao, Synthesis of leaf-like Ag2S nanosheets by hydrothermal method in water–alcohol homogenous medium, Materials Letters, 60, 8, (2006), 1059-1062 https://doi.org/10.1016/j.matlet.2005.10.077
  5. Kamel Sahraoui, Noureddine Benramdane, Mohamed Khadraoui, Redouane Miloua, Christian Mathieu, Characterization of silver sulphide thin films prepared by spray pyrolysis using a new precursor silver chloride, Sensors & Transducers, 27, Special Issue, (2014), 319-325
  6. Suresh Kumar, Pankaj Sharma, Vineet Sharma, CdS nanofilms: effect of deposition temperature on morphology and optical band gap, Physica Scripta, 88, 4, (2013), 1-6 https://doi.org/10.1088/0031-8949/88/04/045603
  7. Lidia Armelao, Paolo Colombo, Monica Fabrizio, Silvia Gross, Eugenio Tondello, Sol–gel synthesis and characterization of Ag2S nanocrystallites in silica thin film glasses, Journal of Materials Chemistry, 9, 11, (1999), 2893-2898 https://doi.org/10.1039/A903377G
  8. Akhiruddin Maddu, Rodo Tua Hasiholan, Mersi Kurniati, Penumbuhan Film Nanokristal SnO2 dengan Metode Chemical Bath Deposition (CBD), Jurnal Nanosains & Nanoteknologi, Edisi Khusus, Agustus 2009, (2009), 96-99
  9. A. Oulguidoum, J. Labrag, M. Abbadi, I. Essaidi, C. El Bekkali, A. Laghzizil, Synthesis and properties of Ag2S-Hydroxyapatite nanocomposite materials, Materials Today: Proceedings, 2022 https://doi.org/10.1016/j.matpr.2022.03.149
  10. Junhua Xiang, Huaqiang Cao, Qingzhi Wu, Sichun Zhang, Xinrong Zhang, Andrew A. R. Watt, L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres, The Journal of Physical Chemistry C, 112, 10, (2008), 3580-3584 https://doi.org/10.1021/jp710597j
  11. Shashank K. Gahlaut, Pinki Devi, J. P. Singh, Self-sustainable and recyclable Ag nanorods for developing Ag-Ag2S nano heterostructures using sewage gas: Applications in photocatalytic water purification, hydrogen evolution, SERS and antibacterial activity, Applied Surface Science, 528, 147037, (2020), 1-9 https://doi.org/10.1016/j.apsusc.2020.147037
  12. Wenwen Li, Jie Yang, Li Cheng, Zhengbiao Gu, Zhaofeng Li, Caiming Li, Yan Hong, KOH/thiourea aqueous solution: A potential solvent for studying the dissolution mechanism and chain conformation of corn starch, International Journal of Biological Macromolecules, 195, (2022), 86-92 https://doi.org/10.1016/j.ijbiomac.2021.12.002
  13. S. I. Sadovnikov, A. I. Gusev, A. A. Rempel, Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders, Superlattices and Microstructures, 83, (2015), 35-47
  14. Hongbo He, Shuangshuang Xue, Zhen Wu, Changlin Yu, Kai Yang, Guiming Peng, Wanqin Zhou, Dehao Li, Sonochemical fabrication, characterization and enhanced photocatalytic performance of Ag2S/Ag2WO4 composite microrods, Chinese Journal of Catalysis, 37, 11, (2016), 1841-1850 https://doi.org/10.1016/S1872-2067(16)62515-9
  15. Afaq Ullah Khan, Aaranda Arooj, Kamran Tahir, Mohamed M. Ibrahim, Violeta Jevtovic, Hessah A. AL-Abdulkarim, Ebraheem Abdu Musad Saleh, Hamza S. Al-Shehri, Mohammed A. Amin, Baoshan Li, Facile fabrication of novel Ag2S-ZnO/GO nanocomposite with its enhanced photocatalytic and biological applications, Journal of Molecular Structure, 1251, 131991, (2022), 1-11 https://doi.org/10.1016/j.molstruc.2021.131991
  16. Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, M. Flores-Acosta, Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications, Materials Research Bulletin, 99, (2018), 385-392 https://doi.org/10.1016/j.materresbull.2017.11.015
  17. Melkyanus Bili Umbu Kaleka, Thermistor Sebagai Sensor Suhu, OPTIKA: Jurnal Pendidikan Fisika, 1, 1, (2017), 8-11
  18. Guanhuan Lei, Hongwei Chen, Shanxue Zheng, Feizhi Lou, Linling Chen, Li Zeng, Jihua Zhang, Qiang Zhao, Chuanren Yang, Effects of RF magnetron sputtering power density on NTC characteristics of Mn–Co–Ni thin films, Journal of Materials Science: Materials in Electronics, 24, 4, (2013), 1203-1207 https://doi.org/10.1007/s10854-012-0906-3
  19. R. Schmidt, A. Basu, A. W. Brinkman, Production of NTCR thermistor devices based on NiMn2O4+δ, Journal of The European Ceramic Society, 24, 6, (2004), 1233-1236 https://doi.org/10.1016/S0955-2219(03)00415-1
  20. Mingming Yu, Dongzhi Liu, Wei Li, Xueqin Zhou, The negative temperature coefficient resistivities of Ag2S–Ag core–shell structures, Applied Surface Science, 288, (2014), 158-165 https://doi.org/10.1016/j.apsusc.2013.09.172
  21. Wahyu Budi Mursanto, Analisis pengkondisi sinyal untuk sensor thermistor-studi kasus linierisasi secara seri, Jurnal Teknik Energi, 4, 2, (2014), 327-335 https://doi.org/10.35313/energi.v4i2.1748
  22. Anthony J. Moulson, John M. Herbert, Electroceramics: materials, properties, applications, First ed., Chapman and Hall, London, 1990, ^ https://doi.org/10.1002/0470867965
  23. Lawrence H. Van Vlack, Elements of Materials Science: An Introductory Text for Engineering Students, Second Edition ed., Addison-Wesley Publishing Co., 1966
  24. Wahyu Budi Mursanto, Rony Fachrul, Rancang bangun tranduser temperatur menggunakan sensor termistor, Jurnal Teknik Energi, 2, 1, (2012), 129-136 https://doi.org/10.35313/energi.v2i1.1783
  25. Alcidio Abrao, Elaine A. J. Martins, A simple procedure for recovery of silver from silver chloride using thiourea, Anais da Associação Brasileira de Química, 48, 1, (1999), 43-45
  26. J. Brent Hiskey, Thiourea as a Lixiviant for Gold and Silver, Kennecott Corporation-Kennecott Minerals Company, Chicago, 1981
  27. F. G. Winarno, Kimia Pangan dan Gizi, Gramedia Pustaka Utama, Jakarta, 1995
  28. J. A. García-Valenzuela, Simple thiourea hydrolysis or intermediate complex mechanism? Taking up the formation of metal sulfides from metal–thiourea alkaline solutions, Comments on Inorganic Chemistry, 37, 2, (2017), 99-115 https://doi.org/10.1080/02603594.2016.1230547
  29. Jiantao Li, Aiwei Tang, Xu Li, Yapeng Cao, Miao Wang, Yu Ning, Longfeng Lv, Qipeng Lu, Yunzhang Lu, Yufeng Hu, Negative differential resistance and carrier transport of electrically bistable devices based on poly (N-vinylcarbazole)-silver sulfide composites, Nanoscale Research Letters, 9, 128, (2014), 1-5 https://doi.org/10.1186/1556-276X-9-128
  30. Kadamkotte Puthenveetil Remya, Thumu Udayabhaskararao, Thalappil Pradeep, Low-temperature thermal dissociation of Ag quantum clusters in solution and formation of monodisperse Ag2S nanoparticles, The Journal of Physical Chemistry C, 116, 49, (2012), 26019-26026 https://doi.org/10.1021/jp306736s
  31. S. I. Sadovnikov, A. I. Gusev, A. A. Rempel, Nanocrystalline silver sulfide Ag2S, Reviews on Advanced Materials Science, 41, 1, (2015), 7-19
  32. H. I. Elsaeedy, A low temperature synthesis of Ag2S nanostructures and their structural, morphological, optical, dielectric and electrical studies: An effect of SDS surfactant concentration, Materials Science in Semiconductor Processing, 93, (2019), 360-365 https://doi.org/10.1016/j.mssp.2019.01.022
  33. Jungho Ryu, Dong-Soo Park, Rainer Schmidt, In-plane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films, Journal of Applied Physics, 109, 113722, (2011), https://doi.org/10.1063/1.3592300
  34. Fitria Septiani, Pengendalian Temperatur Pada Simulator Oven Cat dengan Logika Fuzzy Mamdani Berbasis Mikrokontroler, Politeknik Negeri Bandung, Bandung, 2017
  35. Irma Yulia Basri, Dedy Irfan, Komponen Elektronika, in: Komponen Elektronika, Sukabina Press, Padang, 2018
  36. Yuyu Liu, Wenye Deng, Xianghui Chen, Yan Xue, Xuelian Bai, Huimin Zhang, Aimin Chang, Yongxin Xie, CaMn0.05Zr0.95O3–NiMn2O4 composite ceramics with tunable electrical properties for high temperature NTC thermistors, Ceramics International, (2022), https://doi.org/10.1016/j.ceramint.2022.07.289
  37. Tran Quang Trung, Hoang Sinh Le, Thi My Linh Dang, Sanghyun Ju, Sang Yoon Park, Nae‐Eung Lee, Freestanding, fiber‐based, wearable temperature sensor with tunable thermal index for healthcare monitoring, Advanced Healthcare Materials, 7, 12, (2018), 1800074 https://doi.org/10.1002/adhm.201800074
  38. Anesa Filda Khairani, Ratnawulan, Pembuatan dan karakterisasi listrik keramik ZnFe2O4 dengan doping TiO2 untuk termistor NTC dengan teknik pressing (Fabrication and electrical characterization of ZnFe2O4 ceramics with TiO2 doping for NTC thermistors by pressing techniques), Pillar of Physics, 12, 1, (2019), 77-84
  39. Ramaraju Bendi, Venkateswarlu Bhavanasi, Kaushik Parida, Viet Cuong Nguyen, Afriyanti Sumboja, Kazuhito Tsukagoshi, Pooi See Lee, Self-powered graphene thermistor, Nano Energy, 26, (2016), 586-594 https://doi.org/10.1016/j.nanoen.2016.06.014
  40. Vikram S. Turkani, Dinesh Maddipatla, Binu B. Narakathu, Bradley J. Bazuin, Massood Z. Atashbar, A carbon nanotube based NTC thermistor using additive print manufacturing processes, Sensors and Actuators A: Physical, 279, (2018), 1-9 https://doi.org/10.1016/j.sna.2018.05.042
  41. Subhanarayan Sahoo, Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO3 nanoparticles, Journal of Advanced Ceramics, 7, 2, (2018), 99-108 https://doi.org/10.1007/s40145-018-0261-9

Last update:

No citation recorded.

Last update:

No citation recorded.