skip to main content

Enhanced SOFC Cathode Performance Through Surface Modification of NdBa0.5Sr0.5Co2O5+δ Nanoparticles

Department of Mechanical Engineering, Institut Teknologi Nasional Yogyakarta, Daerah Istimewa Yogyakarta 55281, Indonesia

Received: 7 Aug 2022; Revised: 28 Nov 2022; Accepted: 29 Nov 2022; Available online: 23 Dec 2022; Published: 23 Dec 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The cathode materials fabrication with outstanding performance and stability at intermediate temperatures of 600–800℃ is required for the prospective mass production of solid oxide fuel cells (SOFCs). Infiltration is a potential method because it has proven successful in fabrication and cell performance enhancement. This study mainly focuses on the electrical conductivity and long-term reliability of cathode symmetric cells NdBa0.5Sr0.5Co2O5+δ (NBSC) fabricated by traditional solid-state reaction techniques. The electrical conductivity value of the cathode is in the range of 174–278 S.cm-1. Impedance analysis showed that the infiltration of 0.5M SDC on the NBSC cathode surface dramatically reduced the polarization resistance (Rp) between layers (cathode-electrolyte) from 3.32 Ω.cm2 to 1.82 Ω.cm2 at 600℃ or decreased by 45 % compared to NBSC cathode without 0.5M SDC infiltration. The enhanced stability of NBSC cathode specimens with 0.5M SDC infiltration (NBSC+0.5 M SDC) under SOFC operating conditions proves that samples with infiltration extend their lifetime. Compared to the NBSC cathode, the NBSC+0.5 M SDC cathode has better long-term stability with a lower RP value of 2.35 Ω.cm2. In the OPP range of 0.214-0.0027 atm at 800℃, the relatively tiny Rp value of the symmetrical cell is between 0.030 Ω.cm2 and 0.039 Ω.cm2, below the 0.15 Ω.cm2 suitable performance limit for solid oxide fuel cells.

Fulltext View|Download
Keywords: SOFC; Cathode; Electrical conductivity; Infiltration; Long-term performance stability

Article Metrics:

  1. Caineng Zou, Qun Zhao, Guosheng Zhang, Bo Xiong, Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B, 3, 1, (2016), 1-11 https://doi.org/10.1016/j.ngib.2016.02.001
  2. Jung-Ho Wee, Contribution of fuel cell systems to CO2 emission reduction in their application fields, Renewable and Sustainable Energy Reviews, 14, 2, (2010), 735-744 https://doi.org/10.1016/j.rser.2009.10.013
  3. Kazui Yoshida, Hom B. Rijal, Kazuaki Bohgaki, Ayako Mikami, Hiroto Abe, Energy-saving and CO2-emissions-reduction potential of a fuel cell cogeneration system for condominiums based on a field survey, Energies, 14, 20, (2021), 6611 https://doi.org/10.3390/en14206611
  4. Huangang Shi, Chao Su, Ran Ran, Jiafeng Cao, Zongping Shao, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Progress in Natural Science: Materials International, 30, 6, (2020), 764-774 https://doi.org/10.1016/j.pnsc.2020.09.003
  5. Beom-Kyeong Park, Scott A. Barnett, Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration, Journal of Materials Chemistry A, 8, 23, (2020), 11626-11631 https://doi.org/10.1039/D0TA04280C
  6. Michał Mosiałek, Małgorzata Zimowska, Dzmitry Kharytonau, Anna Komenda, Miłosz Górski, Marcel Krzan, Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3, Materials, 15, 642, (2022), 1-14 https://doi.org/10.3390/ma15020642
  7. Jun Ho Kim, Jeong Woo Yun, Sulfur Tolerance Effects on Sr0.92Y0.08Ti0.5Fe0.5O3-δ as an Alternative Anode in Solid Oxide Fuel Cells, Journal of Electrochemical Science and Technology, 9, 2, (2018), 133-140 https://doi.org/10.5229/JECST.2018.9.2.133
  8. Andrei I. Klyndyuk, Ekaterina A. Chizhova, Dzmitry S. Kharytonau, Dmitry A. Medvedev, Layered oxygen-deficient double perovskites as promising cathode materials for solid oxide fuel cells, Materials, 15, 1, (2021), 141 https://doi.org/10.3390/ma15010141
  9. Renato Pelosato, Giulio Cordaro, Davide Stucchi, Cinzia Cristiani, Giovanni Dotelli, Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review, Journal of Power Sources, 298, (2015), 46-67 https://doi.org/10.1016/j.jpowsour.2015.08.034
  10. Wei Xia, Xianglin Liu, Fangjun Jin, Xuelin Jia, Yu Shen, Jinhua Li, Evaluation of calcium codoping in double perovskite PrBaCo2O5+δ as cathode material for IT-SOFCs, Electrochimica Acta, 364, 137274, (2020), 1-11 https://doi.org/10.1016/j.electacta.2020.137274
  11. Quan Yang, Dong Tian, Rui Liu, Haodong Wu, Yonghong Chen, Yanzhi Ding, Xiaoyong Lu, Bin Lin, Exploiting rare-earth-abundant layered perovskite cathodes of LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln= La and Nd) for SOFCs, International Journal of Hydrogen Energy, 46, 7, (2021), 5630-5641 https://doi.org/10.1016/j.ijhydene.2020.11.031
  12. Hailei Zhao, Yu Zheng, Chunyang Yang, Yongna Shen, Zhihong Du, Konrad Świerczek, Electrochemical performance of Pr1−xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 38, 36, (2013), 16365-16372 https://doi.org/10.1016/j.ijhydene.2013.10.003
  13. Li-Na Xia, Zhi-Ping He, X. W. Huang, Yan Yu, Synthesis and properties of SmBaCo2−xNixO5+δ perovskite oxide for IT-SOFC cathodes, Ceramics International, 42, 1, (2016), 1272-1280 https://doi.org/10.1016/j.ceramint.2015.09.062
  14. Xiubing Huang, Jie Feng, Hassan R. S. Abdellatif, Jing Zou, Guan Zhang, Chengsheng Ni, Electrochemical evaluation of double perovskite PrBaCo2-xMnxO5+δ (x= 0, 0.5, 1) as promising cathodes for IT-SOFCs, International Journal of Hydrogen Energy, 43, 18, (2018), 8962-8971 https://doi.org/10.1016/j.ijhydene.2018.03.163
  15. Matthew West, Arumugam Manthiram, Layered LnBa1−xSrxCoCuO5+δ (Ln= Nd and Gd) perovskite cathodes for intermediate temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 38, 8, (2013), 3364-3372 https://doi.org/10.1016/j.ijhydene.2012.12.133
  16. Sangwook Joo, Junyoung Kim, Jeeyoung Shin, Tak-Hyoung Lim, Guntae Kim, Investigation of a layered perovskite for IT-SOFC cathodes: B-site Fe-doped YBa0.5Sr0.5Co2-xFexO5+δ, Journal of The Electrochemical Society, 163, 14, (2016), F1489-F1495 https://doi.org/10.1149/2.0371614jes
  17. Adi Subardi, Ching-Cheng Chen, Meng-Hsien Cheng, Wen-Ku Chang, Yen-Pei Fu, Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells, Electrochimica Acta, 204, (2016), 118-127 https://doi.org/10.1016/j.electacta.2016.04.069
  18. Chihiro Kuroda, Kun Zheng, Konrad Świerczek, Characterization of novel GdBa0.5Sr0.5Co2−xFexO5+δ perovskites for application in IT-SOFC cells, International Journal of Hydrogen Energy, 38, 2, (2013), 1027-1038 https://doi.org/10.1016/j.ijhydene.2012.10.085
  19. Fuchang Meng, Tian Xia, Jingping Wang, Zhan Shi, Jie Lian, Hui Zhao, Jean-Marc Bassat, Jean-Claude Grenier, Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 39, 9, (2014), 4531-4543 https://doi.org/10.1016/j.ijhydene.2014.01.008
  20. Kun Zheng, Konrad Świerczek, Joanna Bratek, Alicja Klimkowicz, Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells, Solid State Ionics, 262, (2014), 354-358 https://doi.org/10.1016/j.ssi.2013.11.009
  21. Rong-Tsu Wang, Horng-Yi Chang, Jung-Chang Wang, An Overview on the Novel Core-Shell Electrodes for Solid Oxide Fuel Cell (SOFC) Using Polymeric Methodology, Polymers, 13, 16, (2021), 2774 https://doi.org/10.3390/polym13162774
  22. Adi Subardi, Meng-Hsien Cheng, Yen-Pei Fu, Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells, International Journal of Hydrogen Energy, 39, 35, (2014), 20783-20790 https://doi.org/10.1016/j.ijhydene.2014.06.134
  23. Lifang Nie, Mingfei Liu, Yujun Zhang, Meilin Liu, La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells, Journal of Power Sources, 195, 15, (2010), 4704-4708 https://doi.org/10.1016/j.jpowsour.2010.02.049
  24. Adi Subardi, Yen-Pei Fu, Electrochemical and thermal properties of SmBa0.5Sr0.5Co2O5+δ cathode impregnated with Ce0.8Sm0.2O1.9 nanoparticles for intermediate-temperature solid oxide fuel cells, International Journal of Hydrogen Energy, 42, 38, (2017), 24338-24346 https://doi.org/10.1016/j.ijhydene.2017.08.010
  25. Jinhua Piao, Kening Sun, Naiqing Zhang, Xinbing Chen, Shen Xu, Derui Zhou, Preparation and characterization of Pr1−xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells, Journal of Power Sources, 172, 2, (2007), 633-640 https://doi.org/10.1016/j.jpowsour.2007.05.023
  26. Yen-Pei Fu, Jie Ouyang, Chien-Hung Li, Shao-Hua Hu, Chemical bulk diffusion coefficient of Sm0.5Sr0.5CoO3−δ cathode for solid oxide fuel cells, Journal of Power Sources, 240, (2013), 168-177 https://doi.org/10.1016/j.jpowsour.2013.03.138
  27. Shiquan Lü, Xiangwei Meng, Yuan Ji, Chengwei Fu, Cuicui Sun, Hongyuan Zhao, Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 195, 24, (2010), 8094-8096 https://doi.org/10.1016/j.jpowsour.2010.06.061
  28. Abhishek Jaiswal, Eric D. Wachsman, Bismuth-ruthenate-based cathodes for IT-SOFCs, Journal of the Electrochemical Society, 152, 4, (2005), A787-A790 https://doi.org/10.1149/1.1866093
  29. Jiyoun Kim, Won-yong Seo, Jeeyoung Shin, Meilin Liu, Guntae Kim, Composite cathodes composed of NdBa0.5Sr0.5Co2O5+δ and Ce0.9Gd0.1O1.95 for intermediate-temperature solid oxide fuel cells, Journal of Materials Chemistry A, 1, 3, (2013), 515-519 https://doi.org/10.1039/C2TA00025C
  30. Arumugam Manthiram, Jung-Hyun Kim, Young Nam Kim, Ki-Tae Lee, Crystal chemistry and properties of mixed ionic-electronic conductors, Journal of Electroceramics, 27, 2, (2011), 93-107 https://doi.org/10.1007/s10832-011-9635-x
  31. Abdullah Abdul Samat, Abdul Azim Jais, Mahendra Rao Somalu, Nafisah Osman, Andanastuti Muchtar, Kean Long Lim, Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application, Journal of Sol-Gel Science and Technology, 86, 3, (2018), 617-630 https://doi.org/10.1007/s10971-018-4675-1
  32. Adi Subardi, Kun-Yu Liao, Yen-Pei Fu, Oxygen transport, thermal and electrochemical properties of NdBa0.5Sr0.5Co2O5+δ cathode for SOFCs, Journal of the European Ceramic Society, 39, 1, (2019), 30-40 https://doi.org/10.1016/j.jeurceramsoc.2018.01.022
  33. Yinkai Lei, Tian-Le Cheng, You-Hai Wen, Phase field modeling of microstructure evolution and concomitant effective conductivity change in solid oxide fuel cell electrodes, Journal of Power Sources, 345, (2017), 275-289 https://doi.org/10.1016/j.jpowsour.2017.02.007
  34. Atef Zekri, Martin Knipper, Jürgen Parisi, Thorsten Plaggenborg, Microstructure degradation of Ni/CGO anodes for solid oxide fuel cells after long operation time using 3D reconstructions by FIB tomography, Physical Chemistry Chemical Physics, 19, 21, (2017), 13767-13777 https://doi.org/10.1039/C7CP02186K
  35. Adi Subardi, Kun-Yu Liao, Yen-Pei Fu, Oxygen permeation, thermal expansion behavior and electrochemical properties of LaBa0.5Sr0.5Co2O5+δ cathode for SOFCs, RSC Advances, 7, 24, (2017), 14487-14495 https://doi.org/10.1039/C7RA00125H

Last update:

No citation recorded.

Last update: 2024-04-22 03:57:32

No citation recorded.