skip to main content

Thermal Properties of Acetylated Betung Bamboo (Dendrocalamus asper) Pulp – Polypropylene Biocomposites

1Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Bogor, 16911, Indonesia

2Department of Chemical Engineering, Universitas Gadjah Mada, Jl Grafika No. 2, Yogyakarta, Indonesia

Received: 26 Jan 2023; Revised: 8 Apr 2023; Accepted: 10 May 2023; Published: 31 May 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Thermal properties are important factors to determine the proper manufacturing, processing, and storing of biocomposites. Therefore, the thermal properties of the biocomposite made from acetylated betung bamboo pulp and polypropylene (PP) were investigated. The biocomposite was manufactured by hot pressing at 180 oC for 2 minutes and the fiber contents of the acetylated bamboo pulp used were 10 and 20% according to PP weight. The influence of acetylation and fiber content of bamboo pulp on the thermal properties of the biocomposite were investigated by using differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The results showed that acetylated bamboo pulp-PP biocomposite’s were higher than its pure and untreated biocomposites. The rate of crystallization growth of the acetylated bamboo pulp-PP biocomposites was faster up to 4.5 fold than pure PP composite. In addition, its acetylated bamboo pulp-PP had higher onset and maximum decomposition temperature than its untreated fiber-PP biocomposites but lower than PP. According to the results, the best thermal properties of biocomposite were obtained by acetylation of bamboo pulp with 10% fiber content.  

 

Fulltext View|Download
Keywords: Acetylation; Betung bamboo (D.asper); Thermal analysis; Pulp; Polypropylene
Funding: Kementerian Riset dan Teknologi

Article Metrics:

  1. Hisham A. Maddah, Polypropylene as a promising plastic: A review, American Journal of Polymer Science, 6, 1, (2016), 1-11
  2. Fernando Rusch, Arci Dirceu Wastowski, Taisa Shimosakai de Lira, Kelly Costa Cabral Salazar Ramos Moreira, Danielle de Moraes Lucio, Description of the component properties of species of bamboo: a review, Biomass Conversion and Biorefinery, 13, (2023), 2487-2495 https://doi.org/10.1007/s13399-021-01359-3
  3. Wida Banar Kusumaningrum, R. Rochmadi, S. Subyakto, Pembuatan Selulosa Terasetilasi dari Pulp Bambu Betung (Dendrocalamus asper) serta Pengaruhnya Terhadap Sifat Mekanis Biokomposit Polipropilena, Reaktor, 17, 1, (2017), 25-35 https://doi.org/10.14710/reaktor.17.1.25-35
  4. Lang Huang, Qiong Wu, Shujun Li, Rongxian Ou, Qingwen Wang, Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation, Journal of Materials Science, 53, (2018), 6542-6551 https://doi.org/10.1007/s10853-018-1996-y
  5. Hamideh Hajiha, Mohini Sain, Lucia H. Mei, Modification and characterization of hemp and sisal fibers, Journal of Natural Fibers, 11, 2, (2014), 144-168 https://doi.org/10.1080/15440478.2013.861779
  6. Taimur-Al-Mobarak, M. F. Mina, M. A. Gafur, A. N. Ahmed, S. A. Dhar, Effect of chemical modifications on surface morphological, structural, mechanical, and thermal properties of sponge-gourd natural fiber, Fibers and Polymers, 19, (2018), 31-40 https://doi.org/10.1007/s12221-018-7199-3
  7. Haydar U. Zaman, Ruhul A. Khan, Acetylation used for natural fiber/polymer composites, Journal of Thermoplastic Composite Materials, 34, 1, (2021), 3-23 https://doi.org/10.1177/0892705719838000
  8. Jaegwan Moon, Jong Hoon Lee, Kiseob Gwak, Wanhee Im, Characteristics of polypropylene biocomposites: effect of chemical treatment to produce cellulose microparticle, Cellulose, 29, 12, (2022), 6733-6743 https://doi.org/10.1007/s10570-022-04691-7
  9. Yu-Shan Jhu, Teng-Chun Yang, Ke-Chang Hung, Jin-Wei Xu, Tung-Lin Wu, Jyh-Horng Wu, Nonisothermal crystallization kinetics of acetylated bamboo fiber-reinforced polypropylene composites, Polymers, 11, 6, (2019), 1078 https://doi.org/10.3390/polym11061078
  10. Sung-Hoon Kim, Eui-Su Kim, Kisuk Choi, Jung Keun Cho, Hanna Sun, Ji Wang Yoo, In-Kyung Park, Youngkwan Lee, Hyouk Ryeol Choi, Taesung Kim, Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation, Cellulose, 26, (2019), 1085-1097 https://doi.org/10.1007/s10570-018-2122-7
  11. Yu-Shan Jhu, Ke-Chang Hung, Jin-Wei Xu, Tung-Lin Wu, Jyh-Horng Wu, Transcrystallization of the acetylated bamboo fiber/polypropylene composite under isothermal crystallization, Wood Science and Technology, 55, (2021), 797-810 https://doi.org/10.1007/s00226-021-01279-5
  12. Noura Hamour, Amar Boukerrou, Alain Bourmaud, Hocine Djidjelli, Yves Grohens, Effect of alfa fiber treatment and MAPP compatibilization on thermal and mechanical properties of polypropylene/alfa fiber composites, Cellulose Chemistry and Technology, 50, 9-10, (2016), 1069-1076
  13. Noura Hamour, Amar Boukerrou, Hocine Djidjelli, Jean-Eudes Maigret, Johnny Beaugrand, Effects of MAPP compatibilization and acetylation treatment followed by hydrothermal aging on polypropylene alfa fiber composites, International Journal of Polymer Science, 2015, 451691, (2015), https://doi.org/10.1155/2015/451691
  14. Yao Chen, Nicole M. Stark, Mandla A. Tshabalala, Jianmin Gao, Yongming Fan, Weathering characteristics of wood plastic composites reinforced with extracted or delignified wood flour, Materials, 9, 8, (2016), 610 https://doi.org/10.3390/ma9080610
  15. S. M. Luz, J. Del Tio, G. J. M. Rocha, A. R. Gonçalves, A. P. Del’Arco Jr, Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties, Composites Part A: Applied Science and Manufacturing, 39, 9, (2008), 1362-1369 https://doi.org/10.1016/j.compositesa.2008.04.014
  16. P. V. Joseph, K. Joseph, Sabu Thomas, C. K. S. Pillai, V. S. Prasad, Gabriël Groeninckx, Mariana Sarkissova, The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites, Composites Part A: Applied Science and Manufacturing, 34, 3, (2003), 253-266 https://doi.org/10.1016/S1359-835X(02)00185-9
  17. Melvin Avrami, Kinetics of phase change. I General theory, The Journal of Chemical Physics, 7, (1939), 1103-1112 https://doi.org/10.1063/1.1750380
  18. Nobuyoshi Koga, Ozawa’s kinetic method for analyzing thermoanalytical curves: History and theoretical fundamentals, Journal of Thermal Analysis and Calorimetry, 113, (2013), 1527-1541 https://doi.org/10.1007/s10973-012-2882-5
  19. K. W. Prasetiyo, W. B. Kusumaningrum, Properties of polyvinyl alcohol composite filled Ampel bamboo (Bambusa vulgaris) microfibrils fibrillated by mechanical treatment, IOP Conference Series: Earth and Environmental Science, 2020 https://doi.org/10.1088/1755-1315/572/1/012042
  20. R. F. Buson, L. F. L. Melo, M. N. Oliveira, G. A. V. P. Rangel, E. P. Deus, Physical and mechanical characterization of surface treated bamboo fibers, Science and Technology of Materials, 30, 2, (2018), 67-73 https://doi.org/10.1016/j.stmat.2018.03.002
  21. Alireza Ashori, Mehran Babaee, Mehdi Jonoobi, Yahya Hamzeh, Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion, Carbohydrate Polymers, 102, (2014), 369-375 https://doi.org/10.1016/j.carbpol.2013.11.067
  22. Taek-Jun Chung, Ji-Won Park, Hyun-Ji Lee, Hueck-Jin Kwon, Hyun-Joong Kim, Young-Kyu Lee, William Tai Yin Tze, The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation, Applied Sciences, 8, 3, (2018), 376 https://doi.org/10.3390/app8030376
  23. Adane Dagnaw Gudayu, Leif Steuernagel, Dieter Meiners, Rotich Gideon, Effect of surface treatment on moisture absorption, thermal, and mechanical properties of sisal fiber, Journal of Industrial Textiles, 51, 2_suppl, (2022), 2853S-2873S https://doi.org/10.1177/1528083720924774
  24. Thiago Souza Da Rosa, Rosilani Trianoski, Franck Michaud, Christophe Belloncle, Setsuo Iwakiri, Efficiency of different acetylation methods applied to cellulose fibers waste from pulp and paper mill sludge, Journal of Natural Fibers, 19, 1, (2022), 185-198 https://doi.org/10.1080/15440478.2020.1731909
  25. Lei Guo, Fengxiang Chen, Yingshan Zhou, Xin Liu, Weilin Xu, The influence of interface and thermal conductivity of filler on the nonisothermal crystallization kinetics of polypropylene/natural protein fiber composites, Composites Part B: Engineering, 68, (2015), 300-309 https://doi.org/10.1016/j.compositesb.2014.09.004
  26. Dimitrios G. Papageorgiou, Konstantinos Chrissafis, Dimitrios N. Bikiaris, β-nucleated polypropylene: processing, properties and nanocomposites, Polymer Reviews, 55, 4, (2015), 596-629 https://doi.org/10.1080/15583724.2015.1019136
  27. Melvin Avrami, Kinetics of phase change. II transformation‐time relations for random distribution of nuclei, The Journal of Chemical Physics, 8, 2, (1940), 212-224 https://doi.org/10.1063/1.1750631
  28. Majid Rezaei Abadchi, Azam Jalali-Arani, Crystallization and melting behavior of polypropylene (PP) in (vulcanized nanoscale polybutadiene rubber powder/PP) polymer-nanocomposites, Thermochimica Acta, 617, (2015), 120-128 https://doi.org/10.1016/j.tca.2015.08.027
  29. Vahid Khoshkava, Hesam Ghasemi, Musa R. Kamal, Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene, Thermochimica Acta, 608, (2015), 30-39 https://doi.org/10.1016/j.tca.2015.04.007
  30. Chunjiang Xu, Qiaolian Lv, Defeng Wu, Zhifeng Wang, Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization, Cellulose, 24, (2017), 2163-2175 https://doi.org/10.1007/s10570-017-1233-x
  31. Pallab Das, Pankaj Tiwari, Thermal degradation kinetics of plastics and model selection, Thermochimica Acta, 654, (2017), 191-202 https://doi.org/10.1016/j.tca.2017.06.001
  32. Chunhong Tang, FengXiang Xu, Guangyao Li, Combustion performance and thermal stability of basalt fiber-reinforced polypropylene composites, Polymers, 11, 11, (2019), 1826 https://doi.org/10.3390/polym11111826
  33. Djamila Kada, Ahmed Koubaa, Ghezalla Tabak, Sebastien Migneault, Bertrand Garnier, Abderrahim Boudenne, Tensile properties, thermal conductivity, and thermal stability of short carbon fiber reinforced polypropylene composites, Polymer Composites, 39, S2, (2018), E664-E670 https://doi.org/10.1002/pc.24093

Last update:

  1. Composite material from polylactic acid and modified fire flax: synthesis and properties

    N I Cherkashina, Z V Pavlenko, D A Ryzhikh, S V Serebryakov, D V Silchenko. Physica Scripta, 100 (2), 2025. doi: 10.1088/1402-4896/ada11f
  2. Proceedings of the International Conference on Eco-friendly Fibers and Polymeric Materials

    S. L. Aravind, B. Suresha, Shankar Nalinakshan, V. M. Akhil, Ravikiran, B. Sachin. Springer Proceedings in Materials, 60 , 2024. doi: 10.1007/978-981-97-7071-7_13

Last update: 2025-01-23 01:09:44

No citation recorded.