skip to main content

An Investigation into the Anti-Aggregation Potential of Swietenia macrophylla Triterpenoid on Bovine Serum Albumin: Docking and RMSF

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 11 Nov 2024; Revised: 30 Dec 2024; Accepted: 30 Dec 2024; Published: 31 Dec 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Protein aggregation, caused by environmental factors, can lead to neurodegenerative diseases. Hydrophobic compounds like latrepirdine are used in medical treatments like anti-Parkinson’s and Huntington’s diseases. Swietenia macrophylla contains abundant hydrophobic compounds from the triterpenoid group, but their anti-aggregation potential has not been reported. This study investigates the hydrophobic interactions and anti-aggregation potential of triterpenoid compounds, including swietenine, swietenolide, khayasin T, beta-sitosterol, and stigmasterol, against bovine serum albumin (BSA). Latrepirdine is employed as the control compound. In silico methods, molecular docking and molecular dynamics showed potential in clusters 1 and 2, with swietenine having a more stable RMSF value than latrepirdine. The study found four clusters with all ligands, with cluster 1 being the earliest protein opening area. Mahogany seed triterpenoid compounds have potential in cluster 1 (51-67%), while cluster 2 has 37-46%. In cluster 2, they have an advantage over latrepirdine (2%). Stigmasterol and beta-sitosterol are spread across the clusters. The swietenine compound has a more stable RMSF value than latrepirdine. This suggests that mahogany seed triterpenoid compounds have potential as anti-aggregation agents.

Fulltext View|Download
Keywords: In silico; swietenia macrophylla; anti-aggregation; BSA; triterpenoid
Funding: DIPA FSM under contract 1263A/UN7.5.8/PP/2022

Article Metrics:

  1. Amat Rifai, Mukhammad Asy'ari, Agustina L. N. Aminin, Anti-aggregation effect of Ascorbic Acid and Quercetin on aggregated Bovine Serum Albumin Induced by Dithiothreitol: Comparison of Turbidity and Soluble Protein Fraction Methods, Jurnal Kimia Sains dan Aplikasi, 23, 4, (2020), 129-134 https://doi.org/10.14710/jksa.23.4.129-134
  2. Qiang Wu, Chunlai Cao, Suzhen Wei, Hua He, Kangyue Chen, Lijuan Su, Qiulian Liu, Shuang Li, Yongjie Lai, Jing Li, Decreasing hydrophobicity or shielding hydrophobic areas of CH2 attenuates low pH-induced IgG4 aggregation, Frontiers in Bioengineering and Biotechnology, 11, (2023), 1257665 https://doi.org/10.3389/fbioe.2023.1257665
  3. Christopher A. Ross, Michelle A. Poirier, Protein aggregation and neurodegenerative disease, Nature Medicine, 10, 7, (2004), S10-S17 https://doi.org/10.1038/nm1066
  4. Merrill D. Benson, Joel N. Buxbaum, David S. Eisenberg, Giampaolo Merlini, Maria J. M. Saraiva, Yoshiki Sekijima, Jean D. Sipe, Per Westermark, Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee, Amyloid, 25, 4, (2018), 215-219 https://doi.org/10.1080/13506129.2018.1549825
  5. Xianghui Zhou, Xin Zhou, Ruirui Zhu, Zhangyin Ming, Zhipeng Cheng, Yu Hu, The mechanism of oleic acid inhibiting platelet activation stimulated by collagen, Cell Communication and Signaling, 21, (2023), 278 https://doi.org/10.1186/s12964-023-01276-0
  6. P. R. Bharadwaj, K. A. Bates, T. Porter, E. Teimouri, G. Perry, J. W. Steele, S. Gandy, D. Groth, R. N. Martins, Giuseppe Verdile, Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases, Translational Psychiatry, 3, 12, (2013), e332-e332 https://doi.org/10.1038/tp.2013.97
  7. Tenielle Porter, Prashant Bharadwaj, David Groth, Adrian Paxman, Simon M. Laws, Ralph N. Martins, Giuseppe Verdile, The Effects of Latrepirdine on Amyloid-β Aggregation and Toxicity, Journal of Alzheimer's Disease, 50, 3, (2016), 895-905 https://doi.org/10.3233/JAD-150790
  8. Baldwin S. Mootoo, Allisha Ali, Ronald Motilal, Ramish Pingal, Allan Ramlal, Ayub Khan, William F. Reynolds, Stewart McLean, Limonoids from Swietenia macrophylla and S. aubrevilleana, Journal of Natural Products, 62, 11, (1999), 1514-1517 https://doi.org/10.1021/np990199x
  9. Dudi Tohir, Fitriah Sari, Irma Herawati Suparto, Cytotoxicity of the Most Active Fraction of the Seeds of Swietenia macrophylla using Human Breast Cancer MCF-7 Cells, Jurnal Kimia Sains dan Aplikasi, 23, 7, (2020), 234-237 https://doi.org/10.14710/jksa.23.7.234-237
  10. Soheil Zorofchian Moghadamtousi, Bey Hing Goh, Chim Kei Chan, Tara Shabab, Habsah Abdul Kadir, Biological Activities and Phytochemicals of Swietenia macrophylla King, Molecules, 18, 9, (2013), 10465-10483 https://doi.org/10.3390/molecules180910465
  11. Michael C. Ojo, Rebamang A. Mosa, Foluso O. Osunsanmi, Neerish Revaprasadu, Andy R. Opoku, In silico and in vitro assessment of the anti-β-amyloid aggregation and anti-cholinesterase activities of Ptaeroxylon obliquum and Bauhinia bowkeri extracts, Electronic Journal of Biotechnology, 68, (2024), 67-80 https://doi.org/10.1016/j.ejbt.2023.11.004
  12. Sargis Dallakyan, Arthur J. Olson, Small-Molecule Library Screening by Docking with PyRx, in: J.E. Hempel, C.H. Williams, C.C. Hong (Eds.) Chemical Biology: Methods and Protocols, Springer New York, New York, NY, 2015, https://doi.org/10.1007/978-1-4939-2269-7_19
  13. Roman A. Laskowski, Mark B. Swindells, LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, 51, 10, (2011), 2778-2786 https://doi.org/10.1021/ci200227u
  14. Sania Safdar Butt, Yasmin Badshah, Maria Shabbir, Mehak Rafiq, Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians, JMIR Bioinformatics Biotechnol, 1, 1, (2020), e14232 https://doi.org/10.2196/14232
  15. Aleksander Kuriata, Aleksandra Maria Gierut, Tymoteusz Oleniecki, Maciej Paweł Ciemny, Andrzej Kolinski, Mateusz Kurcinski, Sebastian Kmiecik, CABS-flex 2.0: a web server for fast simulations of flexibility of protein structures, Nucleic Acids Research, 46, W1, (2018), W338-W343 https://doi.org/10.1093/nar/gky356
  16. Zabin K. Bagewadi, T. M. Yunus Khan, Bhavya Gangadharappa, Ankita Kamalapurkar, Shaik Mohamed Shamsudeen, Deepak A. Yaraguppi, Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach, Saudi Journal of Biological Sciences, 30, 9, (2023), 103753 https://doi.org/10.1016/j.sjbs.2023.103753
  17. Shabnam Ghahremanian, Mohammad Mehdi Rashidi, Kimai Raeisi, Davood Toghraie, Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review, Journal of Molecular Liquids, 354, (2022), 118901 https://doi.org/10.1016/j.molliq.2022.118901
  18. Saikat Dewanjee, Paramita Paul, Tarun K. Dua, Shovonlal Bhowmick, Achintya Saha, Chapter 38 - Big Leaf Mahogany Seeds: Swietenia macrophylla Seeds Offer Possible Phytotherapeutic Intervention Against Diabetic Pathophysiology, in: V.R. Preedy, R.R. Watson (Eds.) Nuts and Seeds in Health and Disease Prevention (Second Edition), Academic Press, 2020, https://doi.org/10.1016/B978-0-12-818553-7.00038-3
  19. Indah Kurnia Klara, Rini Madyastuti Purwono, Pudji Achmadi, Analisis In Silico Senyawa Flavonoid Kayu Secang (Caesalpinia sappan L.) pada Reseptor α-Amilase Sebagai Antihiperglikemik, Acta VETERINARIA Indonesiana, 11, 3, (2023), 210-219 https://doi.org/10.29244/avi.11.3.210-219
  20. Yun-Peng Sun, Wen-Fang Jin, Yong-Yue Wang, Gang Wang, Susan L. Morris-Natschke, Jin-Song Liu, Guo-Kai Wang, Kuo-Hsiung Lee, Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae), Molecules, 23, 7, (2018), 1588 https://doi.org/10.3390/molecules23071588
  21. Joana Santos, Luísa Lobato, Nuno Vale, Clinical pharmacokinetic study of latrepirdine via in silico sublingual administration, In Silico Pharmacology, 9, (2021), 29 https://doi.org/10.1007/s40203-021-00083-0
  22. Qin-Gang Tan, Xiao-Dong Luo, Meliaceous Limonoids: Chemistry and Biological Activities, Chemical Reviews, 111, 11, (2011), 7437-7522 https://doi.org/10.1021/cr9004023
  23. Vaishali V. Acharya, Pratima Chaudhuri, Modalities of protein denaturation and nature of denaturants, International Journal of Pharmaceutical Sciences Review and Research, 69, 2, (2021), 19-24 http://dx.doi.org/10.47583/ijpsrr.2021.v69i02.002
  24. Bernardina Scafuri, Anna Verdino, Nancy D'Arminio, Anna Marabotti, Computational methods to assist in the discovery of pharmacological chaperones for rare diseases, Briefings in Bioinformatics, 23, 5, (2022), bbac198 https://doi.org/10.1093/bib/bbac198
  25. Jerome De Ruyck, Guillaume Brysbaert, Ralf Blossey, Marc F. Lensink, Molecular docking as a popular tool in drug design, an in silico travel, Advances Applications in Bioinformatics Chemistry, 9, (2016), 1-11 https://doi.org/10.2147/AABC.S105289
  26. Xing Du, Yi Li, Yuan-Ling Xia, Shi-Meng Ai, Jing Liang, Peng Sang, Xing-Lai Ji, Shu-Qun Liu, Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods, International Journal of Molecular Sciences, 17, 2, (2016), 144 https://doi.org/10.3390/ijms17020144
  27. Nalini Vijay Gorantla, Rashmi Das, Hariharakrishnan Chidambaram, Tushar Dubey, Fayaj A. Mulani, Hirekodathakallu V. Thulasiram, Subashchandrabose Chinnathambi, Basic Limonoid modulates Chaperone-mediated Proteostasis and dissolve Tau fibrils, Scientific Reports, 10, (2020), 4023 https://doi.org/10.1038/s41598-020-60773-1
  28. Anjoomaara H. Patel, Riya B. Patel, MahammadHussain J. Memon, Samiya S. Patel, Sharav A. Desai, Dhananjay B. Meshram, Docking, Binding Free Energy Estimation, and MD Simulation of Newly Designed CQ and HCQ Analogues Against the Spike-ACE2 Complex of SARS-CoV-2, International Journal of Quantitative Structure-Property Relationships (IJQSPR), 6, 4, (2021), 77-89 https://doi.org/10.4018/IJQSPR.2021100105
  29. Bandar Aloufi, Ahmad Mohajja Alshammari, Nawaf Alshammari, Mohammad Jahoor Alam, Molecular dynamics simulation analysis of the beta amyloid peptide with docked inhibitors, Bioinformation, 18, 7, (2022), 622 https://doi.org/10.6026/97320630018622

Last update:

No citation recorded.

Last update: 2025-01-21 11:43:13

No citation recorded.