skip to main content

Quantitative Structure-Activity Relationship of O-methyl Quercetin Analogs, Structure Modification, and Molecular Docking as Lung Anticancer EGFR-TK Inhibitor

Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Universitas Pakuan, Bogor, Indonesia

Received: 21 Apr 2025; Revised: 7 Jul 2025; Accepted: 14 Jul 2025; Published: 5 Aug 2025.
Open Access Copyright 2025 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Cancer arises from the uncontrolled proliferation of cells. Lung cancer stands as one example among the diverse array of cancer types. The main cause of the development of lung cancer is the activation of epidermal growth factor receptor (EGFR)-tyrosine kinases (TK). O-methyl quercetin analogs, as one of the quercetin derivatives, can be potential drug candidates for treating lung cancer. In this study, we disclose our findings that O-methyl quercetin analogs and their modified forms, O-methylamino analogs, predicted EGFR-TK inhibitors as lung anticancer. The O-methylated quercetin analogs can be predicted using a Quantitative Structure-Activity Relationship (QSAR) model. The structures were optimized using the parameterized method 3 (PM3) and analyzed through multiple linear regression (MLR). A lower PRESS QSAR values are used for structural modification of O-methylamino as new compounds. Structures of O-methyl quercetin and O-methylamino analogs were docked to the EGFR-TK receptor using molecular docking. The best QSAR model of IC₅₀ predicted result is expressed as log IC50 = 23.059 + (7.397 × log P) + (0.273 × dipole moment) – (0.005 × heat of formation) – (0.733 × ELUMO) – (0.501 × EHOMO) with statistical parameters: R = 0.966; R2 = 0.933; Fcount/Ftable = 3.829853; and Q2 = 0.752226. The O-methyl quercetin analog QC14 (quercetin 5,3’,4’-trimethyl ether) and the modified derivative QC6_8 (3,5-dihydroxy-2-(3-hydroxy-4-((methylamino)methoxy)phenyl)-7-methoxy-4H-chromen-4-one) exhibited the lowest docking scores. Both compounds interact with the key residue Met769 of the EGFR-TK receptor, suggesting their potential as drugs for lung cancer.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Analysis
Table and Figure of Research Result
Subject QSAR; Quercetin Analogs; Molecular Docking; EGFR-TK; Lung Cancer
Type Data Analysis
  Download (207KB)    Indexing metadata
Keywords: QSAR; Quercetin Analogs; Molecular Docking; EGFR-TK; Lung Cancer
Funding: Universitas Pakuan

Article Metrics:

  1. L. Pecorino, Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics, Oxford University Press, 2012,
  2. Hyuna Sung, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, Freddie Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: A Cancer Journal for Clinicians, 71, 3, (2021), 209-249 https://doi.org/10.3322/caac.21660
  3. Haiying Jiang, Mei Zhu, Yanfang Li, Qian Li, Association between EGFR exon 19 or exon 21 mutations and survival rates after first‑line EGFR‑TKI treatment in patients with non‑small cell lung cancer, Molecular and Clinical Oncology, 11, 3, (2019), 301-308 https://doi.org/10.3892/mco.2019.1881
  4. Muhammad Sulaiman Zubair, Syariful Anam, Saipul Maulana, Muhammad Arba, In Vitro and In Silico Studies of Quercetin and Daidzin as Selective Anticancer Agents, Indonesian Journal of Chemistry, 21, 2, (2021), 310-317 https://doi.org/10.22146/ijc.53552
  5. Perumal Elumalai, Devaraj Ezhilarasan, Subramanian Raghunandhakumar, Quercetin Inhibits the Epithelial to Mesenchymal Transition through Suppressing Akt Mediated Nuclear Translocation of β-Catenin in Lung Cancer Cell Line, Nutrition and Cancer, 74, 5, (2022), 1894-1906 https://doi.org/10.1080/01635581.2021.1957487
  6. Vladimir Jurišić, Jasmina Obradovic, Sonja Pavlović, Nataša Djordjevic, Epidermal Growth Factor Receptor Gene in Non-Small-Cell Lung Cancer: The Importance of Promoter Polymorphism Investigation, Analytical Cellular Pathology, 2018, 1, (2018), 6192187 https://doi.org/10.1155/2018/6192187
  7. Tie-Cheng Liu, Xin Jin, Yan Wang, Ke Wang, Role of epidermal growth factor receptor in lung cancer and targeted therapies, American journal of cancer research, 7, 2, (2017), 187-202
  8. Kazue Yoneda, Naoko Imanishi, Yoshinobu Ichiki, Fumihiro Tanaka, Treatment of Non-small Cell Lung Cancer with EGFR-mutations, Journal of UOEH, 41, 2, (2019), 153-163 https://doi.org/10.7888/juoeh.41.153
  9. Adi F. Gazdar, Epidermal growth factor receptor inhibition in lung cancer: the evolving role of individualized therapy, Cancer and Metastasis Reviews, 29, 1, (2010), 37-48 https://doi.org/10.1007/s10555-010-9201-z
  10. Misako Nagasaka, Shirish M. Gadgeel, Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer, Expert Review of Anticancer Therapy, 18, 1, (2018), 63-70 https://doi.org/10.1080/14737140.2018.1409624
  11. Mahmoud Hashemzaei, Amin Delarami Far, Arezoo Yari, Reza Entezari Heravi, Kaveh Tabrizian, Seyed Mohammad Taghdisi, Sarvenaz Ekhtiari Sadegh, Konstantinos Tsarouhas, Dimitrios Kouretas, George Tzanakakis, Dragana Nikitovic, Nikita Yurevich Anisimov, Demetrios A. Spandidos, Aristides M. Tsatsakis, Ramin Rezaee, Anticancer and apoptosis‑inducing effects of quercetin in vitro and in vivo, Oncology Reports, 38, 2, (2017), 819-828 https://doi.org/10.3892/or.2017.5766
  12. Katrin Sak, Helen Lust, Marju Kase, Jana Jaal, Cytotoxic action of methylquercetins in human lung adenocarcinoma cells, Oncology Letters, 15, 2, (2018), 1973-1978 https://doi.org/10.3892/ol.2017.7466
  13. Zhi-Hao Shi, Nian-Guang Li, Yu-Ping Tang, Qian-Ping Shi, Hao Tang, Wei Li, Xu Zhang, Hai-An Fu, Jin-Ao Duan, Biological Evaluation and SAR Analysis of O-Methylated Analogs of Quercetin as Inhibitors of Cancer Cell Proliferation, Drug Development Research, 75, 7, (2014), 455-462 https://doi.org/10.1002/ddr.21181
  14. Siavoush Dastmalchi, Maryam Hamzeh-Mivehroud, Babak Sokouti, Quantitative Structure–Activity Relationship: A Practical Approach, 1st ed., CRC Press, Boca Raton, 2018, https://doi.org/10.1201/9781351113076
  15. Sunyoung Kwon, Ho Bae, Jeonghee Jo, Sungroh Yoon, Comprehensive ensemble in QSAR prediction for drug discovery, BMC Bioinformatics, 20, 1, (2019), 521 https://doi.org/10.1186/s12859-019-3135-4
  16. Bharat Jhanwar, Vandana Sharma, Rajeev K. Singla, Birendra Shrivastava, QSAR-Hansch analysis and related approaches in drug design, Pharmacologyonline, 1, (2011), 306-344
  17. Guoqing Zhou, Nicholas Lubbers, Kipton Barros, Sergei Tretiak, Benjamin Nebgen, Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics, Proceedings of the National Academy of Sciences of the United States of America, 119, 27, (2022), e2120333119 https://doi.org/10.1073/pnas.2120333119
  18. Luca Pinzi, Giulio Rastelli, Molecular Docking: Shifting Paradigms in Drug Discovery, International Journal of Molecular Sciences, 20, 18, (2019), 4331 https://doi.org/10.3390/ijms20184331
  19. David C. Young, Computational chemistry: a practical guide for applying techniques to real world problems, John Wiley & Sons, Inc., 2004, https://doi.org/10.1002/0471220655
  20. Mutista Hafshah, Irvan Maulana Firdaus, Ika Nur Fitriani, Lutfiah Rahmawati, QSAR, Molecular Docking, and Molecular Dynamic of Novel Coumarin Derivatives as α-Glucosidase Inhibitor, Jurnal Kimia Sains dan Aplikasi, 27, 7, (2024), 316-327 https://doi.org/10.14710/jksa.27.7.316-327
  21. Brian J. Bennion, Nicholas A. Be, M. Windy McNerney, Victoria Lao, Emma M. Carlson, Carlos A. Valdez, Michael A. Malfatti, Heather A. Enright, Tuan H. Nguyen, Felice C. Lightstone, Timothy S. Carpenter, Predicting a Drug’s Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data, The Journal of Physical Chemistry B, 121, 20, (2017), 5228-5237 https://doi.org/10.1021/acs.jpcb.7b02914
  22. Grandys Perwira, Kasmui Kasmui, Subiyanto Hadisaputro, Analisis Hubungan Kuantitatif Struktur Aktivitas Antioksidan Senyawa Turunan Apigenin, Indonesian Journal of Chemical Science, 4, 3, (2015), 212-216
  23. Yusthinus Male, I Wayan Sutapa, Yulian A. D. Pusung, Prediksi Potensi Antikanker Senyawa Turunan Xanthon Menggunakan Hubungan Kuantitatif Struktur dan Aktivitas (HKSA), Chemistry Progress, 11, 1, (2019),
  24. Ahmed H. Radhi, Ennas A. B. Du, Fatma A. Khazaal, Zaid M. Abbas, Oday H. Aljelawi, Salam D. Hamadan, Haider A. Almashhadani, Mustafa M. Kadhim, HOMO-LUMO energies and geometrical structures effecton corrosion inhibition for organic compounds predict by DFT and PM3 methods, NeuroQuantology, 18, 1, (2020), 37-45
  25. Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, An Analysis of QSAR Research Based on Machine Learning Concepts, Current Drug Discovery Technologies, 18, 1, (2021), 17-30 http://dx.doi.org/10.2174/1570163817666200316104404
  26. Sari Paramita, Maylani Permata S., Eva Vaulina Y. D., Nasrokhah Nasrokhah, Ponco Iswanto, Pemilihan Metode Perhitungan Kimia Komputasi Semi-empiris untuk Pengembangan 1, 3, 4-Thiadiazole, Indonesian Journal of Chemical Research, 8, 1, (2020), 51-56 https://doi.org/10.30598/ijcr.2020.8-pon
  27. Douglas M. Hawkins, Subhash C. Basak, Denise Mills, Assessing Model Fit by Cross-Validation, Journal of Chemical Information and Computer Sciences, 43, 2, (2003), 579-586 https://doi.org/10.1021/ci025626i
  28. Douglas M. Hawkins, The Problem of Overfitting, Journal of Chemical Information and Computer Sciences, 44, 1, (2004), 1-12 https://doi.org/10.1021/ci0342472
  29. Priyanka De, Supratik Kar, Pravin Ambure, Kunal Roy, Prediction reliability of QSAR models: an overview of various validation tools, Archives of Toxicology, 96, 5, (2022), 1279-1295 https://doi.org/10.1007/s00204-022-03252-y
  30. Haijun Chen, Amy A. Mrazek, Xiaofu Wang, Chunyong Ding, Ye Ding, Laura J. Porro, Huiling Liu, Celia Chao, Mark R. Hellmich, Jia Zhou, Design, synthesis, and characterization of novel apigenin analogues that suppress pancreatic stellate cell proliferation in vitro and associated pancreatic fibrosis in vivo, Bioorganic & Medicinal Chemistry, 22, 13, (2014), 3393-3404 https://doi.org/10.1016/j.bmc.2014.04.043
  31. Artem G. Veiko, Elena A. Lapshina, Ilya B. Zavodnik, Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin, Molecular and Cellular Biochemistry, 476, 12, (2021), 4287-4299 https://doi.org/10.1007/s11010-021-04243-w
  32. Dong Xu, Meng-Jiao Hu, Yan-Qiu Wang, Yuan-Lu Cui, Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application, Molecules, 24, 6, (2019), 1123 https://doi.org/10.3390/molecules24061123
  33. Aaftaab Sethi, Khusbhoo Joshi, Sasikala K., Mallika Alvala, Molecular Docking in Modern Drug Discovery: Principles and Recent Applications, in: V. Gaitonde, P. Karmakar, A. Trivedi (Eds.) Drug Discovery and Development - New Advances, IntechOpen, Rijeka, 2019, https://doi.org/10.5772/intechopen.85991
  34. Qiyao Luo, Liang Zhao, Jianxing Hu, Hongwei Jin, Zhenming Liu, Liangren Zhang, The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing, PLOS ONE, 12, 2, (2017), e0171433 https://doi.org/10.1371/journal.pone.0171433
  35. Frangky Sangande, Jonly Piere Uneputty, Identifikasi Senyawa Bahan Alam Sebagai Inhbitor Tirosin Kinase EGFR: Skrining In Silico Berbasis Farmakofor dan Molecular Docking, Jurnal Fitofarmaka Indonesia, 8, 1, (2021), 1-6 https://doi.org/10.33096/jffi.v8i1.539
  36. Mohammad Azhar Kamal, Hanadi M. Baeissa, Israa J. Hakeem, Reem S. Alazragi, Mohannad SHazzazi, Tahani Bakhsh, Akhmed Aslam, Bassem Refaat, Elshiekh B. Khidir, Kadhem Juma Alkhenaizi, Insights from the molecular docking analysis of EGFR antagonists, Bioinformation, 19, 3, (2023), 260-265 https://doi.org/10.6026/97320630019260

Last update:

No citation recorded.

Last update: 2025-08-19 23:43:50

No citation recorded.