skip to main content

Modified-ZrO₂ Supported Bimetallic Ruthenium-Tin Catalysts for Selective Hydrogenolysis of Furfuryl Alcohol to 1,5-Pentanediol

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru, Indonesia

2Catalysis for Sustainable Energy and Environment (CATSuRe), Inorganic Materials and Catalysis (IMCat) Laboratory, Lambung Mangkurat University, Banjarbaru, Indonesia

3School of Chemistry, Joseph Black Building. University of Glasgow, Glasgow, G12 SQQ, United Kingdom

Received: 30 Jul 2025; Revised: 15 Jan 2026; Accepted: 17 Jan 2026; Published: 7 Feb 2026.
Open Access Copyright 2026 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Biomass-derived platform C5-furanic compounds such as furfural (FFald) and furfuryl alcohol (FFalc) can be converted into 1,5-pentanediol (1,5-PeD), an important intermediate for textiles and plastics, via catalytic hydrogenolysis reaction. However, catalyst selectivity for the hydrogenolysis reaction of FFalc to 1,5-PeD remains a challenge. In this study, modification of ZrO2 with metal oxides such as TiO2(R), TiO2(A), g-Al2O3, and active carbon (C) as the supports of bimetallic ruthenium-tin (Ru-Sn) catalysts for the selective hydrogenolysis of furfuryl alcohol (FFalc) to 1,5-pentanediol (1,5-PeD) has been investigated systematically. The modified-ZrO2 supports were prepared by physical mixing using oxalic acid as a binder at room temperature, followed by calcination under N2 at 300°C (ramping 2.5°C min−1) for 2 h. The supported Ru-Sn catalysts were synthesised by using the coprecipitation-hydrothermal method at 150°C for 24 h and reduced with H2 at 400°C (ramping 3.3°C min−1) for 2 h. The synthesised catalysts were characterised by means of XRD, H2-TPR, and NH3-TPD. The pristine structures of ZrO2, TiO2, and g-Al2O3 were maintained during the preparation of catalysts. Ru-Sn/ZrO2-TiO2(A) catalyst (Ru = 4 wt%, Sn = 1.30 wt%, ZrO2 = 67 wt%, and TiO2 (A) = 33 wt%) with calcination temperature of 300°C gave the highest yield of 1,5-PeD (72%) at 140°C, H2 10 bar for 3 h.

Fulltext View|Download
Keywords: bimetallic Ru-Sn catalyst; modified-ZrO2; furfuryl alcohol; 1,5-pentanediol
Funding: LPDP BRIN-RIIM2 scheme under contract 79/IV/KS/11/2022; DRPTM-Kemendiktisaintek Regular Fundamental shceme under contract 056/E5/PG.02.00.PL/2024; LPPMULM Internal Fundamental scheme under contract 1374.95/UN8.2/PG/2024 and 1878/UN8.2/PG/2025

Article Metrics:

  1. Kui Wang, Jefferson William Tester, Sustainable management of unavoidable biomass wastes, Green Energy and Resources, 1, 1, (2023), 100005 https://doi.org/10.1016/j.gerr.2023.100005
  2. Morgen Mukamwi, Tosin Somorin, Raimonda Soloha, Elina Dace, Databases for biomass and waste biorefinery – a mini-review and SWOT analysis, Bioengineered, 14, 1, (2023), 2286722 https://doi.org/10.1080/21655979.2023.2286722
  3. Xiaodan Li, Pei Jia, Tiefeng Wang, Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals, ACS Catalysis, 6, 11, (2016), 7621-7640 https://doi.org/10.1021/acscatal.6b01838
  4. Xu Zhang, Siquan Xu, Qinfang Li, Guilin Zhou, Haian Xia, Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis, RSC Advances, 11, 43, (2021), 27042-27058 https://doi.org/10.1039/D1RA04633K
  5. Rafael F. Perez, Marco A. Fraga, Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose, Green Chemistry, 16, 8, (2014), 3942-3950 https://doi.org/10.1039/C4GC00398E
  6. Keiichi Tomishige, Yoshinao Nakagawa, Masazumi Tamura, Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species, Green Chemistry, 19, 13, (2017), 2876-2924 https://doi.org/10.1039/C7GC00620A
  7. Xiaoao Sun, Bin Wen, Feng Wang, Wenyu Zhang, Kangyu Zhao, Xianxiang Liu, Research advances on the catalytic conversion of biomass-derived furfural into pentanediols, Catalysis Communications, 187, (2024), 106864 https://doi.org/10.1016/j.catcom.2024.106864
  8. Marcel Schlaf, Selective deoxygenation of sugar polyols to α,ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis, Dalton Transactions, 39, (2006), 4645-4653 https://doi.org/10.1039/B608007C
  9. David Martin Alonso, Stephanie G. Wettstein, James A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chemical Society Reviews, 41, 24, (2012), 8075-8098 https://doi.org/10.1039/c2cs35188a
  10. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, V. M. Novotortsev, Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components, Russian Chemical Reviews, 83, 8, (2014), 718 https://doi.org/10.1070/RC2014v083n08ABEH004432
  11. Keiichi Tomishige, Masayoshi Honda, Hiroshi Sugimoto, Lujie Liu, Mizuho Yabushita, Yoshinao Nakagawa, Recent progress on catalyst development for ring-opening C-O hydrogenolysis of cyclic ethers in the production of biomass-derived chemicals, Carbon Neutrality, 3, 1, (2024), 17 https://doi.org/10.1007/s43979-024-00090-y
  12. Rodiansono, Maria Dewi Astuti, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu, One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni–Sn alloy catalysts in an ethanol/H2O solvent mixture, Green Chemistry, 21, 9, (2019), 2307-2315 https://doi.org/10.1039/C8GC03938K
  13. Rodiansono, Atina Sabila Azzahra, Uripto Trisno Santoso, Edi Mikrianto, Eka Suarso, Kiky Corneliasari Sembiring, Indri Badria Adilina, Gagus Ketut Sunnardianto, Ahmad Afandi, Highly efficient and selective aqueous phase hydrogenolysis of furfural to 1,5-pentanediol using bimetallic Ru–SnOx/γ-Al2O3 catalysts, Catalysis Science & Technology, 15, 3, (2025), 808-821 https://doi.org/10.1039/D4CY01138D
  14. Rodiansono Rodiansono, Atina Sabila Azzahra, Edi Mikrianto, Arif Ridhoni, Ikhsan Mustari, Anggita Nurfitriani, Thea Seventina Desiani Bodoi, Rahmat Eko Sanjaya, Eka Suarso, Pathur Razi Ansyah, Screening Support of Bimetallic Ruthenium-Tin Catalysts for Aqueous Phase Hydrogenolysis of Furfuryl Alcohol to 1,5-Pentanediol, Bulletin of Chemical Reaction Engineering & Catalysis, 20, 2, (2025), 293-306 https://doi.org/10.9767/bcrec.20357
  15. Husni Wahyu Wijaya, Takashi Kojima, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu, Synthesis of 1,5-Pentanediol by Hydrogenolysis of Furfuryl Alcohol over Ni–Y2O3 Composite Catalyst, ChemCatChem, 9, 14, (2017), 2869-2874 https://doi.org/10.1002/cctc.201700066
  16. Rodiansono, Heny Puspita Dewi, Kamilia Mustikasari, Maria Dewi Astuti, Sadang Husain, Sutomo, Selective hydroconversion of coconut oil-derived lauric acid to alcohol and aliphatic alkane over MoOx-modified Ru catalysts under mild conditions, RSC Advances, 12, 21, (2022), 13319-13329 https://doi.org/10.1039/D2RA02103J
  17. Lungang Chen, Yulei Zhu, Hongyan Zheng, Chenghua Zhang, Yongwang Li, Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts, Applied Catalysis A: General, 411-412, (2012), 95-104 https://doi.org/10.1016/j.apcata.2011.10.026
  18. Jiajie Huo, Jean-Philippe Tessonnier, Brent H. Shanks, Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review, ACS Catalysis, 11, 9, (2021), 5248-5270 https://doi.org/10.1021/acscatal.1c00197
  19. Shuichi Koso, Naoyuki Ueda, Yasunori Shinmi, Kazu Okumura, Tokushi Kizuka, Keiichi Tomishige, Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2, Journal of Catalysis, 267, 1, (2009), 89-92 https://doi.org/10.1016/j.jcat.2009.07.010
  20. Sibao Liu, Yasushi Amada, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige, One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst, Green Chemistry, 16, 2, (2014), 617-626 https://doi.org/10.1039/C3GC41335G
  21. Sibao Liu, Yasushi Amada, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige, Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol, Catalysis Science & Technology, 4, 8, (2014), 2535-2549 https://doi.org/10.1039/C4CY00161C
  22. A. Barranca, I. Gandarias, P. L. Arias, I. Agirrezabal-Telleria, One-Pot Production of 1,5-Pentanediol from Furfural Through Tailored Hydrotalcite-Based Catalysts, Catalysis Letters, 153, 7, (2023), 2018-2025 https://doi.org/10.1007/s10562-022-04144-7
  23. Rodiansono, Maria Dewi Astuti, Kamilia Mustikasari, Sadang Husain, Fathur Razi Ansyah, Takayoshi Hara, Shogo Shimazu, Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY® Ni–Sn alloy catalysts, RSC Advances, 12, 1, (2022), 241-250 https://doi.org/10.1039/D1RA06135F
  24. Rodiansono, Atina Sabila Azzahra, Pathur Razi Ansyah, Sadang Husain, Shogo Shimazu, Rational design for the fabrication of bulk Ni3Sn2 alloy catalysts for the synthesis of 1,4-pentanediol from biomass-derived furfural without acidic co-catalysts, RSC Advances, 13, 31, (2023), 21171-21181 https://doi.org/10.1039/D3RA03642A
  25. Rodiansono, Atina Sabila Azzahra, Edi Mikrianto, Kiky Corneliasari Sembiring, Ahmad Afandi, Gagus Ketut Sunnardianto, Indri Badria Adilina, One-pot synthesis of confined structure Ru3Sn7 alloys on alumina for exceptionally rapid and selective hydrogenolysis of furfuryl alcohol to 1,5-pentanediol, Catalysis Science & Technology, 15, 18, (2025), 5452-5463 https://doi.org/10.1039/D5CY00542F
  26. Jamal Ftouni, Ara Muñoz-Murillo, Andrey Goryachev, Jan P. Hofmann, Emiel J. M. Hensen, Li Lu, Christopher J. Kiely, Pieter C. A. Bruijnincx, Bert M. Weckhuysen, ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone, ACS Catalysis, 6, 8, (2016), 5462-5472 https://doi.org/10.1021/acscatal.6b00730
  27. Wilfred L. F. Armarego, Purification of Laboratory Chemicals, Butterworth-Heinemann, 2017,
  28. A. S. Azzahra, N. Annisa, R. Rodiansono, U. Trisno Santoso, R. Eko Sanjaya, E. Suarsa, Effect of Charcoal-Doping on The Yield of 1, 5-Pentanediol and Reusability in Ru-Sn/g-Al2O3-Charcoal Catalysts, 1st ICWSDGs2024, 2025
  29. Onkar Mangla, Savita Roy, Monoclinic Zirconium Oxide Nanostructures Having Tunable Band Gap Synthesized under Extremely Non-Equilibrium Plasma Conditions, Proceedings, 3, 1, (2019), 10 https://doi.org/10.3390/IOCN_2018-1-05486
  30. Md Sahadat Hossain, Samina Ahmed, Easy and green synthesis of TiO2 (Anatase and Rutile): Estimation of crystallite size using Scherrer equation, Williamson-Hall plot, Monshi-Scherrer Model, size-strain plot, Halder- Wagner Model, Results in Materials, 20, (2023), 100492 https://doi.org/10.1016/j.rinma.2023.100492
  31. Fengbo Li, Tao Lu, Bingfeng Chen, Zhijun Huang, Guoqing Yuan, Pt nanoparticles over TiO2–ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol, Applied Catalysis A: General, 478, (2014), 252-258 https://doi.org/10.1016/j.apcata.2014.04.012
  32. Zhicheng Luo, Qiming Bing, Jiechen Kong, Jing-yao Liu, Chen Zhao, Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols, Catalysis Science & Technology, 8, 5, (2018), 1322-1332 https://doi.org/10.1039/C8CY00037A
  33. J. C. Yori, J. M. Grau, V. M. Benítez, C. R. Vera, C. L. Pieck, J. M. Parera, Comparison between Ni and Pt promoted SO42−–ZrO2 catalysts for n-octane hydroisomerization-cracking, Catalysis Letters, 100, 1, (2005), 67-71 https://doi.org/10.1007/s10562-004-3087-8
  34. Hanan Atia, Udo Armbruster, Andreas Martin, Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds, Journal of Catalysis, 258, 1, (2008), 71-82 https://doi.org/10.1016/j.jcat.2008.05.027
  35. Masazumi Tamura, Ken-ichi Shimizu, Atsushi Satsuma, Comprehensive IR study on acid/base properties of metal oxides, Applied Catalysis A: General, 433-434, (2012), 135-145 https://doi.org/10.1016/j.apcata.2012.05.008
  36. Joby Sebastian, Chalachew Mebrahtu, Feng Zeng, Regina Palkovits, Strong Metal-Support Interactions on TiO2-Supported Metal Catalysts for Fine-Tuning Catalysis, Angewandte Chemie International Edition, 65, 1, (2026), e02611 https://doi.org/10.1002/anie.202502611
  37. Yaru Zhang, Wenjie Yan, Haifeng Qi, Xiong Su, Yang Su, Xiaoyan Liu, Lin Li, Xiaofeng Yang, Yanqiang Huang, Tao Zhang, Strong Metal–Support Interaction of Ru on TiO2 Derived from the Co-Reduction Mechanism of RuxTi1–xO2 Interphase, ACS Catalysis, 12, 3, (2022), 1697-1705 https://doi.org/10.1021/acscatal.1c04785

Last update:

No citation recorded.

Last update: 2026-02-07 10:19:37

No citation recorded.