skip to main content

Sensitivity Analysis on Soil and Water Assesment Tool (SWAT) Model at Brantas Watershed, East Java Indonesia

Mohamad Wawan Sujarwo orcid scopus  -  Universitas Jember, Indonesia
*Indarto Indarto orcid scopus publons  -  Universitas Jember, Indonesia
Marga Mandala orcid scopus  -  Universitas Jember, Indonesia

Citation Format:
Abstract

Brantas Watershed and its tributaries (approximately 14,103 km2) are essential in supplying water for About 30% of the East Java province population. Management of water resources in this watershed has become a challenging issue. The modelling processes' conformity and results to mimic the existing hydrological processes are still in question. This study aims to analyze sensitive parameters of the SWAT (Soil & Water Assessment Tool) model on the significant watershed. The input model is climate and spatial (DEM, soil layer, LULC) data. The observes the hydrological processes monthly and annually from the model result. Next, Sensitivity analysis using the SWAT-CUP tool and SUFI algorithm shows 18 sensitive parameters. The nine (9) parameters have a more than 50% sensitivity level. The four (4) correlated to the soil layer's runoff generation and water movement. Then, eight (8) parameters are related to baseflow calculation. Simulation results illustrate the strong effect of climate change (especially rainfall) on water yield and sedimentation.

Fulltext View|Download
Keywords: Sensitivity; analysis; SWAT-CUP; SUFI; brantas; east java
Funding: Research Institute (LP2M), University of Jember, 2019 - 2020

Article Metrics:

  1. Abbaspour, K. 2015. SWAT-CUP Calibration and uncertainty programs in User Manual. Eawag Aquatuc Research
  2. Abbaspour, K. C., Vejdani, M., and Haghighat, S. 2008. SWAT-CUP Calibration and Uncertainty Programs for SWAT. Eawag: Swiss Federal Institute of Aquatic Science and Technology. Ueberlandstr 133,
  3. J.G. Arnold, D. N. Moriasi, P. W. Gassman, K. C. Abbaspour, M. J. White, R. Srinivasan, C. Santhi, R. D. Harmel, A. van Griensven, M. W. Van Liew, N. Kannan, and M. K. Jha. 2012. Swat: Model Use, Calibration, and Validation. American Society of Agricultural and Biological Engineers 55(4), 1491–1508
  4. J.G. Arnold, J.R. Kiniry, R. Srinivasan, J.R. Williams, E.B. Haney, and S.L. Neitsch. 2012. Soil Water Assessment Tool (SWAT) Input/Output Documentation Version 2012. Texas: Texas Water Resource Institute
  5. Balitbang Pertanian. 2014. Peta tanah dengan skala 1:50.000. Indonesian Agency for Agricultural Research and Development. Available at: http://balittanah.litbang.pertanian.go.id/ind/
  6. BIG. 2018. Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Badan Informasi Geospasial. Available at: http://tides.big.go.id/DEMNAS/ (Accessed: 12 January 2019)
  7. BPS Jatim. 2014. Proyeksi Penduduk Jawa Timur 2010 - 2020. Surabaya. Available at: https://jatim.bps.go.id
  8. Brighenti, T. M., Bonumáb, N. B., Grisonc, F., Motac, A. A., Kobiyamad, M., Chaff, P. L. B. 2019. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecological Engineering, 127(2019), 103–113
  9. Erlina. 2018. Analisis Banjir Dan Sedimentasi Wilayah Sungai Brantas (Tinjaun Terhadap Metode Pengendalian). Jurnal Teknik Sipil 8(1), 1–14
  10. JICA. 2019. The Republic of Indonesia, the project for assessing and integrating climate change impacts into the water resources management plans for Brantas and Musi river basins : water resources management plan : final report ; Volume-II. - Main Report. Japan. Available at: https://openjicareport.jica.go.jp/619/619/619_108_12353090.html
  11. Joseph, N., Preetha, P. P. and Narasimhan, B. 2021. Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son river in the Ganga basin. Ecological Indicators 121, p. 107110. doi: 10.1016/j.ecolind.2020.107110
  12. Kementerian PUPR. 2010. Pengelolaan sumber daya air wilayah sungai bengawan solo. Jakarta
  13. Krysanova, V. and Arnold, J. G. 2008. Advances in ecohydrological modelling with SWAT—a review. Hydrological Sciences Journal 53(5), 939–947
  14. Liu, Z., Herman, J. D., Huang, G., Kadir, T., Dahlke, H. E. 2021. Identifying climate change impacts on surface water supply in the southern Central Valley, California. Science of the Total Environment, 759(xxxx), 1-14 p. 143429
  15. Moreira, L. L., Schwamback, D. and Rigo, D. 2018. Sensitivity analysis of the Soil and Water Assessment Tools (SWAT) model in streamflow modeling in a rural river basin. Revista Ambiente e Agua, 13(6), 1–12
  16. Daniel, N., Jeffrey, G. A., Michnel, W. V., Ronald, L. B., R. Daren, H., Tamie, L. V. 2007. Model Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations. American Society of Agricultural and Biological Engineers 50(3), 885–900
  17. Rani, S. and Sreekesh, S. 2021. Flow regime changes under future climate and land cover scenarios in the Upper Beas basin of Himalaya using SWAT model. International Journal of Environmental Studies 78(3), 382–397

Last update:

No citation recorded.

Last update: 2024-09-10 02:01:46

No citation recorded.