skip to main content

Study of Estimation Methane Emissions from Municipal Solid Waste Landfill Based on IPCC Model (Case Study: Klotok Landfill, Kediri)

Restu Hikmah Ayu Murti  -  Universitas Pembangunan Nasional Veteran, Indonesia
*Muhammad Abdus Salam Jawwad  -  Universitas Pembangunan Nasional Veteran, Indonesia
Syadzadhiya Q. Z. Nisa  -  Universitas Pembangunan Nasional Veteran, Indonesia
Achmad C. Ni’am  -  Institut Teknologi Adhi Tama Surabaya, Indonesia

Citation Format:

Sanitary landfill is the most common type of waste processing in Indonesia because it can minimize the negative impacts caused by waste and can utilize methane gas produced from the waste decomposition process. An analysis of the population projections of Kediri and waste generation was carried out to determine the waste generation at the Klotok Landfill. This study predicts methane gas emissions produced at the Klotok Landfill based on the IPCC method. This study uses two types of data: secondary and primary data. Secondary data includes the number of residents and waste entering the landfill, while the primary data used is waste composition. A sanitary landfill is needed in order to minimize the negative impact of solid waste, one of the negative impacts caused by solid waste is the formation of methane gas.  This study uses the IPCC (Intergovernmental Panel Climate Change) model to calculate methane generation in the next ten years. The results show that population significantly impacts CH4 emissions from solid waste disposal facilities. Due to the city's growing urbanization and population increase, the production of waste in Kediri is increasing. Total waste production in 2032 is 723.98 m3/day or 217,195.44 Kg/day. In contrast, the total percentage of waste that goes to the Landfill is around 55%, so the waste that goes to the landfill is around 398.19 m3/day or 119.457.49 kg/day. In addition, the increase in the amount of solid waste at the Klotok landfill also produces methane gas. Based on the amount of waste that goes to the landfill, the projected methane gas formation from the IPCC model in 2032 can reach 6.148 Mg in a day.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Analysis
Study of Estimation Methane Emissions from Municipal Solid Waste Landfill Based on IPCC Model (Case Study: Klotok Landfill, Kediri)
Subject Klotok landfill;, populations; waste generations; IPCC model; methane emission
Type Data Analysis
  Download (1MB)    Indexing metadata
Keywords: Klotok landfill; populations; waste generations; IPCC model; methane emission

Article Metrics:

  1. Adhikari. B.K.. Barrington. S. and Martinez. J. 2006. Predicted growth of world urban food waste and methane production. Waste Management and Research 24(5), 421–433
  2. Al Saadi. A.J.M. and Rao. L.N. 2016. Design and production of methane gas from food waste using anaerobic digestion. Global Research and Development Journal for Engineering 1(8), 77–82
  3. Andriani. D. and Atmaja. T.D. 2019. The potentials of landfill gas production: a review on municipal solid waste management in Indonesia. Journal of Material Cycles and Waste Management 21(6), 1572–1586
  4. Ayob. S.F. and Sheau-Ting. L. 2016. Key determinants of waste separation intention among students on campus. MATEC Web of Conferences 66
  5. Badan Standarisasi Nasional. 1994. Metode pengambilan dan pengukuran contoh timbulan dan komposisi sampah perkotaan. Badan Standardisasi Nasional 16
  6. Bartlett. A.A. 1993. The arithmetic of growth: Methods of calculation. Population and Environment 14(4), 359–387
  7. Börjesson. G.. Samuelsson. J.. Chanton. J.. Adolfsson. R.. Galle. B.. & Svensson. B. H. 2009. A national landfill methane budget for Sweden based on field measurements. and an evaluation of IPCC models. Tellus. Series B: Chemical and Physical Meteorology 61 B(2). 424–435
  8. BPS. 2022. Jumlah Penduduk (Jiwa). 2018-2020
  9. Chiemchaisri. C. et al. 2012. reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Critical Reviews in Environmental Science and Technology 42(4), 412–434
  10. Damanhuri. E.. & Padmi. T. 2010. Diktat Kuliah: Pengelolaan Sampah. Program Studi Teknik Lingkungan. Fakultas Teknik Sipil dan Lingkungan. ITB [Preprint]
  11. DLHKP. 2022. Kebersihan dan Pengelolan Sampah Kota Kediri. Situs Resmi DLHKP Kota Kediri
  12. Ferronato. N. and Torretta. V. 2019. Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health 16(6)
  13. Gollapalli. M. and Kota. S.H. 2018. Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models. Environmental Pollution 234, 174–180
  14. González. C. et al. 2011. Effect of Solid wastes composition and confinement time on methane production in a dump. Journal of Environmental Protection 02(10), 1310–1316
  15. Hadi. N.S. 2014. Estimation of municipal solid waste generation rate (case study of Hilla City ). 12(1), 72–80
  16. Hariyanto. S. et al. 2019. The potential of methane gas production at Klotok Landfill Kediri City. IOP Conference Series: Earth and Environmental Science 245(1)
  17. Intergovernmental Panel Climate Change(IPCC). The Physical Science Basis; Summary for Policymakers. 2021
  18. Krause. M.J. 2018. Intergovernmental panel on climate change’s landfill methane protocol: Reviewing 20 years of application. Waste Management and Research 36(9), 827–840
  19. Lando. A. T.. Rahim. I. R.. Sari. K.. Djamaluddin. I.. Arifin. A. N.. and Sari. A. M. (2021). Estimation of methane emissions from municipal solid waste landfill in makassar city based on ipcc waste model. IOP Conference Series: Earth and Environmental Science. 841(1)
  20. Nisa. S.Q.Z.. Sitogasa. P.S.A. and Mirwan. M. 2021. Estimating methane emission from floating net cage fish farming in sutami reservoir Indonesia. International Conference Eco-Innovation in Science. Engineering. and Technology 2021. 166–170
  21. Osama Ragab. 2019. Solid waste management and design of a sanitary landfill for sohar area. International Journal of Engineering Research and V8(11), 268–275
  22. Penman. J. et al. 2006. 2006 IPCC - Guidelines for National Greenhouse Gas Inventories. Directrices para los inventarios nacionales GEI. 12
  23. Penteado. R. et al. 2012. Application of the IPCC model to a Brazilian landfill: First results. Energy Policy 42, 551–556
  24. Murti. R. H. A.. Sukarmawati. Y.. and Jawwad. M. A. S. 2022. Studi rona awal lingkungan pembangunan tempat pemrosesan akhir ( TPA ) Gohong. Al-Ard : Jurnal Teknik Lingkungan 7(2), 95–101
  25. Rashkevich, N. Pastukhova, A. Konoval V. and Slovinskyi, V. 2021. Formation of mathematical apparatus of methods of fire and explosion safety control of landfill. Mechanics and Mathematical Methods Joournal III(2), 18-28
  26. Sitogasa. P.S.A. 2022. Penerapan solid waste management tool ( SWMT ) sebagai analisis gas rumah kaca hasil penanganan sampah di Kota Kediri. 2(2), 7–15
  27. Tchobanoglous. G.. and Kreith. F. 1993. Integrated solid waste management: engineering principles and management issues. The Mcgraw-Hill Companies. Inc [Preprint]
  28. US EPA. 2022. Basic Information about Landfill Gas., 2020
  29. Wijaya. S.P.. Ainun. S. and Permadi. D.A. 2021. methane emission estimation and dispersion modeling for a landfill in West Java Indonesia. Journal of the Civil Engineering Forum 7(3), 239

Last update:

No citation recorded.

Last update: 2024-02-29 08:35:28

No citation recorded.