skip to main content

Biodiversity, Roles, and Potency of Bacteria in Agricultural Land

*Wahyu Purbalisa orcid scopus  -  Universitas Indonesia, Indonesia
Dian Hendrayanti  -  Universitas Indonesia, Indonesia
Wahida Annisa Yusuf  -  Balai Penelitian Lingkungan Pertanian, Indonesia

Citation Format:
Abstract

Biotic and abiotic factors influence biodiversity. Environment and human activities change biodiversity. Human activities to get their food through agricultural activities affect the diversity of bacteria in agricultural lands. Cultivation techniques, plant species, plant growth stadia, and soil influence the diversities of bacteria in agricultural land. The dominant bacteria on agricultural land are from the phyla Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, and Firmicutes. Proteobacteria play a role in the nitrogen, carbon, and sulphur cycles, Actinobacteria in the carbon cycle, and Acidobacteria in the nitrogen cycle. Bacteroidetes work as decomposers of organic matter. Firmicutes are required for biocontrol and plant growth. The high use of pesticides in agricultural land has decreased the diversity of bacteria. Indigenous bacteria that survive in the condition of high pesticide residue contamination have the potential as remediation agents for pesticide residues. Indigenous bacteria can degrade pesticide residues through oxidation-reduction and complexation reactions, thereby reducing the level of pesticide contamination.

Fulltext View|Download
Keywords: Biodiversity; bacteria; agricultural land

Article Metrics:

  1. Akinsemolu, A.A. 2018. The Role of Microorganism in Achieving The Sustainable Development Goals. Journal of Clear Production, 182, 139-155
  2. Ares, A., Costa, J., Joaquim, C., Pintado, D., Santos, D., Messmer, M. M., & Mendes-Moreira, P. M. 2021. Effect of Low-Input Organic and Conventional Farming Systems on Maize Rhizosphere in Two Portuguese Open-Pollinated Varieties (OPV), “Pigarro” (Improved Landrace), and “SinPre” (a Composite Cross Population). Frontiers in Microbiology, 12, 1–17
  3. Aroua, I., Abid, G., Souissi, F., Mannai, K., Nebli, H., Hattab, S., Borgi, Z., & Jebara, M. 2019. Identification of Two Pesticide-Tolerant Bacteria Isolated from Medicago Sativa Nodule Useful for Organic Soil Phytostabilization. International Microbiology, 22(1), 111–120
  4. Bayat, M., H. Burkhart, M. Namiranian, S.K. Hamidi, S. Heidari, & M. Hassani. 2021. Assessing Biotic and Abiotic Effects on Biodiversity Index Using Machine Learning. Forests 12(4), 1-21
  5. Custer, G., van Diepen, L., & Stump, W. 2021. An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA. Applied Microbiology, 1(2), 162–176
  6. Doolotkeldieva, T., Konurbaeva, M., & Bobusheva, S. 2017. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research, 25(32), 31848–31862
  7. Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A., Sundaresan, V., & Jeffery, L. D. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 112(8), E911–E920
  8. Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. 2019. Bioactive products from plant-endophytic Gram-positive bacteria. Frontiers in Microbiology, 10, 1–12
  9. Fernández‐baca, C. P., Rivers, A. R., Maul, J. E., Kim, W., Poudel, R., McClung, A. M., Roberts, D. P., Reddy, V. R., & Barnaby, J. Y. 2021. Rice plant-soil microbiome interactions are driven by root and shoot biomass. Diversity, 13(3), 1–19
  10. Gumiere, T., Gumiere, S. J., Matteau, J. P., Constant, P., Létourneau, G., & Rousseau, A. N. 2019. Soil bacterial community associated with high potato production and minimal water use. Frontiers in Environmental Science, 6
  11. Harsanti, E.S., W.I. Susanti, S. Wahyuni, A.N. Ardiwinata, & P. Setyanto.2014. Remediasi Residu Insektisida POPs Menggunakan Mikroba Konsorsia. Jurnal Tanah dan Iklim Edisi Khusus Pencemaran Lingkungan Pertanian. 9-20
  12. Hendrayanti, D., Khoiriyah, I., Fadilah, N., & Salamah, A. 2018. Diversity of N2-fixing cyanobacteria in an organic rice field during the cycle of rice crops. AIP Conference Proceedings, 2002(August 2018)
  13. Hendrayanti, D., Kusmadji, L. R., Yuliana, P., Amanina, M. A., & Septiani, A. 2012. Phylogeny of Indonesian Nostoc (Cyanobacteria) Isolated from Paddy Fields as Inferred from Partial Sequence of 16S rRNA Gene. MAKARA of Science Series, 16(3), 203–208
  14. Huang, J., Tagawa, K., Wang, B., Wen, J., & Wang, J. 2019. Seasonal surface runoff characteristics in the semiarid region of western Heilongjiang Province in Northeast China-A case of the Alun River Basin. Water (Switzerland), 11(3)
  15. Indah, P., Mokodompit, S., Kindangen, J. I., & Tarore, R. C. 2019. Perubahan Lahan Pertanian Basah Di Kota Kotamobagu. Spasial, 6(3), 792–799
  16. Indratin, Kurnia, A., & Wahyuni, S. 2019. Degradation of Cypermethrin by Indigenous Bacteria from Contaminated Soil. Makara Journal of Science, 23(4), 210–216
  17. Iqbal, M. A., & Bartakke, K. V. 2014. Isolation Of Pesticide Degrading Microorganism From Soil. Advances in Bioresearch, 5(4), 164–168
  18. Kanzaki, Y., & Takemoto, K. 2021. The diversity of dominant soil bacteria increases with warming velocity on a global scale. Diversity, 13(3)
  19. Kurnia, A., E.S. Harsanti, & P. Setyanto. 2013. Pengaruh Mikroba dan Pupuk Kompos Untuk Degradasi DDT di Tanah. Prosiding Seminar Nasional Pertanian Ramah Lingkungan. 255- 260
  20. Kurniawati, S., K.H. Mutaqqin, & Giyanto. 2017. Keragaman Bakteri Pada Pertanaman Padi di Lahan Sawah Irigasi, Tadah Hujan Dan Rawa. Prosiding Seminar Nasional Agroinovasi Spesifik Lokasi Untuk Ketahanan Pangan Pada Era Masyarakat Ekonomi ASEAN.259-266
  21. Laishram, J., K.G. Saxena, R.K. Maikhuri, & K.S. Rao.2012. Soil Quality and Soil Health: A Review. Journal of Ecology and Environmental Sciences, 38(1), 19-37
  22. Laxmishree, C., & S. Nandita.2017. Botanical Pesticides-A Major Alternative to Chemical Pesticides: A Review. Journal of Life Sciences, 5(4), 722-729
  23. Li, W. hua, Liu, Q. zhi, & Chen, P. 2018. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. Journal of Integrative Agriculture, 17(11), 2570–2582
  24. Liu, S., Khan, M. H., Yuan, Z., Hussain, S., Cao, H., & Liu, Y. 2021. Response of soil microbiome structure and its network profiles to four soil amendments in a monocropping strawberry greenhouse. PLoS ONE, 16, 1–20
  25. Ma, X. ling, Liu, J., Chen, X. fen, Li, W. tao, Jiang, C. yu, Wu, M., Liu, M., & Li, Z. pei. 2021. Bacterial diversity and community composition change in paddy soils that have different parent materials and fertility levels. Journal of Integrative Agriculture, 20(10), 2797–2806
  26. Maron, P., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A., & Ranjard, L. 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Applied and Environmental Microbiology, 84(9)
  27. Mhete, M., Eze, P. N., Rahube, T. O., & Akinyemi, F. O. 2020. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Scientific African, 7
  28. Moekasan, T. K., & Prabaningrum, L. 2011. Penggunaan Pestisida Berdasarkan Konsepsi Pengendalian Hama Terpadu (PHT). Yayasan Bina Tani Sejahtera
  29. Ngegba, M. P., G. Cui, .Z. Khalid, & G. Zhong. 2022. Use of Botanical Pesticide in Agriculture as an Alternative to Synthetic Pesticides. Agriculture, 12(5)
  30. Osman, J. R., Dubow, M. S., Osman, J. R., & Dubow, M. S. 2019. Bacterial communities on the surface of oligotrophic ( nutrient-poor ) soils To cite this version : HAL Id : Hal-02067677 Bacterial communities on the surface of oligotrophic. Biotechnology, March
  31. Peltoniemi, K., Velmala, S., Fritze, H., Lemola, R., & Pennanen, T. 2021. Long-term impacts of organic and conventional farming on the soil microbiome in boreal arable soil. European Journal of Soil Biology, 104, 103314
  32. Pineda, A., Dicke, M., Pieterse, C. M. J., & Pozo, M. J. 2013. Beneficial microbes in a changing environment: Are they always helping plants deal with insects? Functional Ecology, 27(3), 574–586
  33. Poniman, Ardiwinata, A. N., & Tohir, A. M. 2017. Penurunan Residu Endrin Pada Pemberian Urea Arang Aktif dan Urea Biochar di Lahan Pertanian Padi Intensif. Prosiding Workshop Dan Seminar Internasional : Inovasi Pestisida Ramah Lingkungan Mendukung Swasembada Pangan, 3
  34. Poniman, Indratin, & Muanisah, U. 2017. Pemanfaatan Biochar dan Arang Aktif dari Limbah Pertanian Untuk Menurunkan Residu Klordan Pada Tanah dan Beras. Prosiding Seminar Nasional Hasil Penelitian Pertanian VII, 228–235
  35. Putrie, R. F. W., Aryantha, I. N. P., Iriawati, & Antonius, S. 2020. Diversity of endophytic and rhizosphere bacteria from pineapple (Ananas comosus) plant in a semi-arid ecosystem. Biodiversitas, 21(7), 3084–3093. https://doi.org/10.13057/biodiv/d210728
  36. Saharan, B. S., & Nehra, V. 2011. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research, 2011(1), 21
  37. Schmidt, T. M. and C. Waldron. 2015. Microbial diversity in soils of agricultural landscapes and its relation to ecosystem function. Pages 135-157 in S. K. Hamilton, J. E. Doll, and G. P. Robertson, editors. The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability. Oxford University Press, New York, New York, USA
  38. Sengupta, S., Ganguli, S., & Singh, P. K. 2017. Metagenome analysis of the root endophytic microbial community of Indian rice (O. Sativa L.). Genomics Data, 12, 41–43
  39. Silva, A.P., L.C. Babujia, L.S. Matsumoto, M.F. Guimaraes, & M. Hungria. 2013. Bacterial Diversity Under Different Tillage and Crop Rotation Systems in an Oxisol of Southern Brazil. The Open Agriculture Journal, 7(1), 40-47
  40. Sobucki, L., R.R. Ramos, L.A. Meireles, Z.I. Antoniolli, & R.J.S. Jacques. 2021. Contribution of Enzymes to Soil Quality and The Evolution of Research in Brazil. Revista Brasileira de Ciencia do Solo, (45), 1-18
  41. Suryanto, A. 2019. Pola Tanam (1st ed.). UB Press
  42. Tang, Z., Huang, Q., Nie, Z., Yang, Y., Yang, J., Qu, D., & Cheng, J. 2016. Levels and distribution of organochlorine pesticides and hexachlorobutadiene in soils and terrestrial organisms from a former pesticide-producing area in Southwest China. Stochastic Environmental Research and Risk Assessment, 30(4), 1249–1262
  43. Tangapo, A. M., Astuti, D. I., & Aditiawati, P. 2018. Dynamics and diversity of cultivable rhizospheric and endophytic bacteria during the growth stages of cilembu sweet potato (Ipomoea batatas L. var. cilembu). Agriculture and Natural Resources, 52(4), 309–316
  44. Uqab, B., Mudasir, S., & Nazir, R. 2016. Review on Bioremediation of Pesticides. Journal of Bioremediation & Biodegradation, 7(3), 1–5
  45. Venter, Z. S., Jacobs, K., & Hawkins, H. J. 2016. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia, 59(4), 215–223
  46. Walters, W. A., Jin, Z., Youngblut, N., Wallace, J. G., Sutter, J., Zhang, W., González-Peña, A., Peiffer, J., Koren, O., Shi, Q., Knight, R., Del Rio, T. G., Tringe, S. G., Buckler, E. S., Dangl, J. L., & Ley, R. E. 2018. A large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences of the United States of America, 115(28), 7368–7373
  47. Wang, M., & Cernava, T. 2020. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environmental Science and Ecotechnology, 4
  48. Wei, F., Fan, R., Passey, T., Hu, X. ping, & Xu, X. 2016. Identification of candidate soil microbes responsible for small-scale heterogeneity in strawberry plant vigor. Journal of Integrative Agriculture, 15(9), 2049–2058
  49. Xu, J., Zhang, Y., Zhang, P., Trivedi, P., Riera, N., Wang, Y., Liu, X., Fan, G., Tang, J., Coletta-filho, H. D., Cubero, J., Deng, X., Ancona, V., Lu, Z., Zhong, B., Roper, M. C., Capote, N., Catara, V., Pietersen, G., … Wang, N. 2018. The structure and function of the global citrus rhizosphere microbiome. Nature Communication
  50. Yu, X., Jin, Z., & Wang, H. 2021. Effect of saline water for drip irrigation on microbial diversity and fertility of aeolian sandy soils. Diversity, 13(8), 1–12
  51. Zid, Muhammad; Hardi, O. S. 2018. Biogeografi (1st ed.). Bumi Aksara

Last update:

No citation recorded.

Last update: 2024-03-28 13:09:53

No citation recorded.