skip to main content

Microplastics Removal Strategies in Aquatic Environments

Edhi Widiyanto  -  Universitas Diponegoro, Indonesia
*Titik Istirokhatun orcid scopus  -  Universitas Diponegoro, Indonesia
Pertiwi Andarani  -  Universitas Diponegoro, Indonesia
Heru Susanto  -  Universitas Diponegoro, Indonesia
Ria Desiriani  -  Universitas Diponegoro, Indonesia
Pamella Apriliana  -  Kobe University, Japan

Citation Format:
Abstract

Microplastics (MPs) have been globally detected in aquatic environments. The abundance of MPs contributed to the negative effects on aquatic ecosystems. Thus, it’s critical to create effective solutions for removing MPs from water. In this review, we compared several methods, including physical, physicochemical, and biological approaches, towards membrane filtration. The physical filtration technology is the simplest way in comparison with other methods. However, the removal ability of physical filtration against smaller MPs than 20 𝜇m becomes a crucial concern. Then, the other option is an adsorption method. Although the adsorption option is an inexpensive method, the undesirable aspect during adsorbent usage may not be environmentally friendly in aquatic systems. The similar problem is also demonstrated by chemical approaches in terms of coagulation and electrocoagulation treatment. Consequently, the biological methods were found to be less toxic to the environment. Even though it provides safe conditions to the environment, the biological approach needs a long time to degrade MPs. To overcome their disadvantages, the membrane technology offers efficient removal of MPs and no addition of chemical usage. However, the main point to pay attention to is that each technology has benefits and drawbacks. Therefore, the application of multiple technologies for MPs removal is considered. 

Fulltext View|Download
Keywords: Microplastics, removal, filtration, aquatics, environment
Funding: Diponegoro University through the WCRU Program (WCRU Grant No. 357-32/UN7.D2/PP/IV/2024).

Article Metrics:

  1. Acarer, S., 2023. A review of microplastic removal from water and wastewater by membrane technologies. Water Sci. Technol. 88, 199–219
  2. Aguiar, A.B.S., Costa, J.M., Santos, G.E., Sancinetti, G.P., Rodriguez, R.P., 2022. Removal of metals by biomass derived adsorbent in its granular and powdered forms: Adsorption capacity and kinetics analysis. Sustain. Chem. 3, 535–550
  3. Ahmed, S.F., Islam, N., Tasannum, N., Mehjabin, A., Momtahin, A., Chowdhury, A.A., Almomani, F., Mofijur, M., 2024. Microplastic removal and management strategies for wastewater treatment plants. Chemosphere 347, 140648
  4. Akarsu, C., Isik, Z., M’barek, I., Bouchareb, R., Dizge, N., 2022. Treatment of personal care product wastewater for reuse by integrated electrocoagulation and membrane filtration processes. J. Water Process Eng. 48, 102879
  5. Al Mamun, A., Prasetya, T.A.E., Dewi, I.R., Ahmad, M., 2023. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 858, 159834
  6. Alrbaihat, M.R., Abu-Afifeh, Q., 2023. Eco-friendly microplastic removal through physical and chemical techniques: a review. Ann. Adv. Chem 7, 14–24
  7. Amirah Mohd Napi, N. nor, Ibrahim, N., Adli Hanif, M., Hasan, M., Dahalan, F.A., Syafiuddin, A., Boopathy, R., 2023. Column-based removal of high concentration microplastics in synthetic wastewater using granular activated carbon. Bioengineered 14, 2276391
  8. Amjad, M., Intisar, A., Afzal, A., Hussain, N., 2023. Biological methods for the removal of microplastics from water. In: Advances in Chemical Pollution, Environmental Management and Protection. Elsevier, pp. 65–78
  9. Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A.D., Dey, A., Federici, S., 2023. Biotechnological methods to remove microplastics: a review. Environ. Chem. Lett. 21, 1787–1810
  10. Arvaniti, O.S., Antonopoulou, G., Tsagkogianni, D., Stasinakis, A.S., 2021. Screening on the sorption of emerging contaminants to polystyrene and polyethylene and use of coagulation–flocculation process for microplastics’ removal. Glob. Nest J 23, 303–308
  11. Auta, H.S., Emenike, C.U., Fauziah, S.H., 2017a. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation. Environ. Pollut. 231, 1552–1559
  12. Auta, H.S., Emenike, C.U., Jayanthi, B., Fauziah, S.H., 2017b. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment
  13. Auta, S.H., Emenike, C.U., Fauziah, S.H., 2017. Screening for polypropylene degradation potential of bacteria isolated from mangrove ecosystems in Peninsular Malaysia
  14. Badola, N., Bahuguna, A., Sasson, Y., Chauhan, J.S., 2022. Microplastics removal strategies: A step toward finding the solution. Front. Environ. Sci. Eng. 16, 1–18
  15. Barbier, J.-S., Dris, R., Lecarpentier, C., Raymond, V., Delabre, K., Thibert, S., Tassin, B., Gasperi, J., 2022. Microplastic occurrence after conventional and nanofiltration processes at drinking water treatment plants: preliminary results. Front. Water 4, 886703
  16. Cai, H., Chen, M., Chen, Q., Du, F., Liu, J., Shi, H., 2020. Microplastic quantification affected by structure and pore size of filters. Chemosphere 257, 127198
  17. Chen, Z., Liu, J., Chen, C., Huang, Z., 2020. Sedimentation of nanoplastics from water with Ca/Al dual flocculants: Characterization, interface reaction, effects of pH and ion ratios. Chemosphere 252, 126450
  18. Cverenkárová, K., Valachovičová, M., Mackuľak, T., Žemlička, L., Bírošová, L., 2021. Microplastics in the food chain. Life 11, 1349
  19. Dang, T.T.H., Li, C.-W., Choo, K.-H., 2016. Comparison of low-pressure reverse osmosis filtration and polyelectrolyte-enhanced ultrafiltration for the removal of Co and Sr from nuclear plant wastewater. Sep. Purif. Technol. 157, 209–214
  20. Devi, R.S., Kannan, V.R., Nivas, D., Kannan, K., Chandru, S., Antony, A.R., 2015. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar. Pollut. Bull. 96, 32–40
  21. Diagboya, P.N., Olu-Owolabi, B.I., Mtunzi, F.M., Adebowale, K.O., 2020. Clay-carbonaceous material composites: Towards a new class of functional adsorbents for water treatment. Surfaces and Interfaces
  22. Dissanayake, P.D., Kim, S., Sarkar, B., Oleszczuk, P., Sang, M.K., Haque, M.N., Ahn, J.H., Bank, M.S., Ok, Y.S., 2022. Effects of microplastics on the terrestrial environment: a critical review. Environ. Res. 209, 112734
  23. Duan, X., Xiang, M., Wang, L., Yan, Q., Yang, S., Jiang, Z., 2019. Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters. Food Chem. 297, 124925
  24. Elkhatib, D., Oyanedel-Craver, V., Carissimi, E., 2021. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep. Purif. Technol. 276, 118877
  25. Esfandiari, A., Mowla, D., 2021. Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Saf. Environ. Prot. 151, 341–354
  26. Fadare, O.O., Okoffo, E.D., 2020. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279
  27. Farooq, M., Nisa, F.U., Manzoor, Z., Tripathi, S., Thulasiraman, A.V., Khan, M.I., Khan, M.Y.A., Gani, K.M., 2023. Abundance and characteristics of microplastics in a freshwater river in northwestern Himalayas, India-Scenario of riverbank solid waste disposal sites. Sci. Total Environ. 886, 164027
  28. Ferreira, G.V.B., Justino, A.K.S., Eduardo, L.N., Schmidt, N., Martins, J.R., Ménard, F., Fauvelle, V., Mincarone, M.M., Lucena-Frédou, F., 2023. Influencing factors for microplastic intake in abundant deep-sea lanternfishes (Myctophidae). Sci. Total Environ. 867, 161478
  29. Funck, M., Al-Azzawi, M.S.M., Yildirim, A., Knoop, O., Schmidt, T.C., Drewes, J.E., Tuerk, J., 2021. Release of microplastic particles to the aquatic environment via wastewater treatment plants: The impact of sand filters as tertiary treatment. Chem. Eng. J. 426, 130933
  30. Gnanasekaran, G., Arthanareeswaran, G., Mok, Y.S., 2021. A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Sep. Purif. Technol. 277, 119655
  31. Gómez-Méndez, L.D., Moreno-Bayona, D.A., Poutou-Pinales, R.A., Salcedo-Reyes, J.C., Pedroza-Rodríguez, A.M., Vargas, A., Bogoya, J.M., 2018. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One 13, e0203786
  32. Gonzalez-Camejo, J., Morales, A., Peña-Lamas, J., Lafita, C., Enguídanos, S., Seco, A., Martí, N., 2023. Feasibility of rapid gravity filtration and membrane ultrafiltration for the removal of microplastics and microlitter in sewage and wastewater from plastic industry. J. Water Process Eng. 51, 103452
  33. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D., Rochman, C.M., 2019. Magnetic extraction of microplastics from environmental samples. Environ. Sci. Technol. Lett. 6, 68–72
  34. Habib, S., Iruthayam, A., Abd Shukor, M.Y., Alias, S.A., Smykla, J., Yasid, N.A., 2020. Biodeterioration of untreated polypropylene microplastic particles by Antarctic bacteria. Polymers (Basel). 12, 2616
  35. Han, L., Ma, J., Lin, H., Chen, C., Teng, J., Li, B., Zhao, D., Xu, Y., Yu, W., Shen, L., 2023. A novel flower-like nickel-metal-organic framework (Ni-MOF) membrane for efficient multi-component pollutants removal by gravity. Chem. Eng. J. 470, 144311
  36. Harahap, M.G., Abfertiawan, M.S., Syafila, M., 2024. Challenges in using electrocoagulation process in removal of Nickel metal in wastewater: a literature review. J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung
  37. Hu, Y., Zhou, L., Zhu, J., Gao, J., 2023. Efficient removal of polyamide particles from wastewater by electrocoagulation. J. Water Process Eng. 51, 103417
  38. Jeon, H.J., Kim, M.N., 2015. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 103, 141–146
  39. Jeon, H.J., Kim, M.N., 2016. Comparison of the functional characterization between alkane monooxygenases for low-molecular-weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 114, 202–208
  40. Jeyakumar, D., Chirsteen, J., Doble, M., 2013. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour. Technol. 148, 78–85
  41. Karapanagioti, H.K., Kalavrouziotis, I.K., 2019. Microplastics in water and wastewater. Iwa Publishing
  42. Kaushal, J., Khatri, M., Arya, S.K., 2021. Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Clean. Eng. Technol. 2, 100083
  43. Kim, K.T., Park, S., 2021. Enhancing microplastics removal from wastewater using electro-coagulation and granule-activated carbon with thermal regeneration. Processes 9, 617
  44. Krishnan, R.Y., Manikandan, S., Subbaiya, R., Karmegam, N., Kim, W., Govarthanan, M., 2023. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination–A critical review. Sci. Total Environ. 858, 159681
  45. Lee, P.S., Jung, S.M., 2022. Quantitative analysis of microplastics coagulation-removal process for clean sea salt production. Int. J. Environ. Sci. Technol. 19, 5205–5216
  46. Liu, F., Zhang, C., Li, H., Offiong, N.-A.O., Bi, Y., Zhou, R., Ren, H., 2023. A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment. Chem. Eng. J. 456, 141078
  47. Liu, Q., Chen, Y., Chen, Z., Yang, F., Xie, Y., Yao, W., 2022. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Sci. Total Environ. 851, 157991
  48. Liu, X., Li, M.-C., Lu, Y., Li, Z., Liu, C., Liu, Z., Mei, C., Wu, Q., 2024. Cellulose nanofiber-coated delignified wood as an efficient filter for microplastic removal. Prog. Nat. Sci. Mater. Int
  49. Liwarska-Bizukojć, E., Olejnik, D., 2020. Activated sludge community and flocs morphology in response to aluminum oxide particles in the wastewater treatment system. J. Water Process Eng. 38, 101639
  50. Lu, S., Liu, L., Yang, Q., Demissie, H., Jiao, R., An, G., Wang, D., 2021. Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Sci. Total Environ. 786, 147508
  51. Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., Qu, J., 2019a. Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J. Environ. Sci. 78, 267–275
  52. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., Li, L., 2019b. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. J. 359, 159–167
  53. Mahesh, S, Gowda, N.K., Mahesh, Sahana, 2023. Identification of microplastics from urban informal solid waste landfill soil; MP associations with COD and chloride. Water Sci. Technol. 87, 115–129
  54. Mateo, S., Zhang, A., Piedra, A., Ruiz, A., Miranda, R., Rodríguez, F., 2024. Electrocoagulation Assessment to Remove Micropolystyrene Particles in Wastewater. ACS ES&T Water
  55. Mehmood, C.T., Qazi, I.A., Hashmi, I., Bhargava, S., Deepa, S., 2016. Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int. Biodeterior. Biodegradation 113, 276–286
  56. Mendonça, I., Faria, M., Rodrigues, F., Cordeiro, N., 2023. Microalgal-based industry vs microplastic pollution: Current knowledge and future perspectives. Sci. Total Environ. 168414
  57. Mohan, A.J., Sekhar, V.C., Bhaskar, T., Nampoothiri, K.M., 2016. Microbial assisted high impact polystyrene (HIPS) degradation. Bioresour. Technol. 213, 204–207
  58. Osman, A.I., Hosny, M., Eltaweil, A.S., Omar, S., Elgarahy, A.M., Farghali, M., Yap, P.-S., Wu, Y.-S., Nagandran, S., Batumalaie, K., 2023. Microplastic sources, formation, toxicity and remediation: a review. Environ. Chem. Lett. 21, 2129–2169
  59. Paço, A., Duarte, K., da Costa, J.P., Santos, P.S.M., Pereira, R., Pereira, M.E., Freitas, A.C., Duarte, A.C., Rocha-Santos, T.A.P., 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 586, 10–15
  60. Patterson, B., 2021. Membrane Filtration of Microplastic Fibers: Assessment of Membrane, Microplastic, and Solution Properties
  61. Peixoto, J., Silva, L.P., Krüger, R.H., 2017. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J. Hazard. Mater. 324, 634–644
  62. Perren, W., Wojtasik, A., Cai, Q., 2018. Removal of microbeads from wastewater using electrocoagulation. ACS omega 3, 3357–3364
  63. Poerio, T., Piacentini, E., Mazzei, R., 2019. Membrane processes for microplastic removal. Molecules 24, 4148
  64. Pramanik, B.K., Pramanik, S.K., Monira, S., 2021. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 282, 131053
  65. Rajala, K., Grönfors, O., Hesampour, M., Mikola, A., 2020. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res. 183, 116045
  66. Ramos, R.L., dos Santos, C.R., Drumond, G.P., de Souza Santos, L.V., Amaral, M.C.S., 2023. Critical review of microplastic in membrane treatment plant: Removal efficiency, environmental risk assessment, membrane fouling, and MP release. Chem. Eng. J. 148052
  67. Rhein, F., Scholl, F., Nirschl, H., 2019. Magnetic seeded filtration for the separation of fine polymer particles from dilute suspensions: Microplastics. Chem. Eng. Sci. 207, 1278–1287
  68. Rodrigues, M.O., Abrantes, N., Gonçalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M., 2018. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci. Total Environ. 633, 1549–1559
  69. Rout, P.R., Mohanty, A., Sharma, A., Miglani, M., Liu, D., Varjani, S., 2022. Micro-and nanoplastics removal mechanisms in wastewater treatment plants: A review. J. Hazard. Mater. Adv. 6, 100070
  70. Ru, J., Huo, Y., Yang, Y., 2020. Microbial degradation and valorization of plastic wastes. Front. Microbiol. 11, 507487
  71. Sangale, M.K., Shahnawaz, M., Ade, A.B., 2019. Potential of fungi isolated from the dumping sites mangrove rhizosphere soil to degrade polythene. Sci. Rep. 9, 5390
  72. Santo, M., Weitsman, R., Sivan, A., 2013. The role of the copper-binding enzyme–laccase–in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegradation 84, 204–210
  73. Senathirajah, K., Kandaiah, R., Panneerselvan, L., Sathish, C.I., Palanisami, T., 2023. Fate and transformation of microplastics due to electrocoagulation treatment: Impacts of polymer type and shape. Environ. Pollut. 334, 122159
  74. Shah, Z., Gulzar, M., Hasan, F., Shah, A.A., 2016. Degradation of polyester polyurethane by an indigenously developed consortium of Pseudomonas and Bacillus species isolated from soil. Polym. Degrad. Stab. 134, 349–356
  75. Shen, M., Hu, T., Huang, W., Song, B., Zeng, G., Zhang, Y., 2021. Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: Performance, mechanism and utilization. Chem. Eng. J. 421, 129918
  76. Shen, M., Zhang, Y., Almatrafi, E., Hu, T., Zhou, C., Song, B., Zeng, Z., Zeng, G., 2022. Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem. Eng. J. 428, 131161
  77. Siipola, V., Pflugmacher, S., Romar, H., Wendling, L., Koukkari, P., 2020. Low-cost biochar adsorbents for water purification including microplastics removal. Appl. Sci. 10, 788
  78. Simon, M., Vianello, A., Vollertsen, J., 2019. Removal of> 10 µm microplastic particles from treated wastewater by a disc filter. Water 11, 1935
  79. Skaf, D.W., Punzi, V.L., Rolle, J.T., Kleinberg, K.A., 2020. Removal of micron-sized microplastic particles from simulated drinking water via alum coagulation. Chem. Eng. J. 386, 123807
  80. Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N., Kiran, S., 2018. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 149, 52–68
  81. Srikanth, M., Sandeep, T., Sucharitha, K., Godi, S., 2022. Biodegradation of plastic polymers by fungi: a brief review. Bioresour. Bioprocess. 9, 42
  82. Sun, C., Wang, Z., Chen, L., Li, F., 2020. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chem. Eng. J. 393, 124796
  83. Sun, C., Wang, Z., Zheng, H., Chen, L., Li, F., 2021. Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. J. Hazard. Mater. 420, 126599
  84. Sun, J., Zhu, Z.-R., Li, W.-H., Yan, X., Wang, L.-K., Zhang, L., Jin, J., Dai, X., Ni, B.-J., 2021. Revisiting microplastics in landfill leachate: unnoticed tiny microplastics and their fate in treatment works. Water Res. 190, 116784
  85. Takeuchi, H., Tanaka, S., Koyuncu, C.Z., Nakada, N., 2023. Removal of microplastics in wastewater by ceramic microfiltration. J. Water Process Eng. 54, 104010
  86. Talvitie, J., Mikola, A., Koistinen, A., Setälä, O., 2017. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 123, 401–407
  87. Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y., Xie, B., 2021. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem. Eng. J. 406, 126804
  88. Taniguchi, I., Yoshida, S., Hiraga, K., Miyamoto, K., Kimura, Y., Oda, K., 2019. Biodegradation of PET: current status and application aspects. Acs Catal. 9, 4089–4105
  89. Temporiti, M.E.E., Nicola, L., Nielsen, E., Tosi, S., 2022. Fungal enzymes involved in plastics biodegradation. Microorganisms 10, 1180
  90. Tong MeiPing, T.M., He Lei, H.L., Rong HaiFeng, R.H., Li Meng, L.M., Kim HyunJung, K.H., 2020. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment
  91. Van der Bruggen, B., 2009. Chemical modification of polyethersulfone nanofiltration membranes: A review. J. Appl. Polym. Sci. 114, 630–642
  92. Venkatesh, S., Mahboob, S., Govindarajan, M., Al-Ghanim, K.A., Ahmed, Z., Al-Mulhm, N., Gayathri, R., Vijayalakshmi, S., 2021. Microbial degradation of plastics: Sustainable approach to tackling environmental threats facing big cities of the future. J. King Saud Univ. 33, 101362
  93. Verma, A., Sharma, G., Kumar, A., Dhiman, P., Mola, G.T., Shan, A., Si, C., 2024. Microplastic pollutants in water: A comprehensive review on their remediation by adsorption using various adsorbents. Chemosphere 141365
  94. Vimala, P.P., Mathew, L., 2016. Biodegradation of polyethylene using Bacillus subtilis. Procedia Technol. 24, 232–239
  95. Yang, J., Monnot, M., Sun, Y., Asia, L., Wong-Wah-Chung, P., Doumenq, P., Moulin, P., 2023. Microplastics in different water samples (seawater, freshwater, and wastewater): removal efficiency of membrane treatment processes. Water Res. 232, 119673
  96. Yuan, F., Yue, L., Zhao, H., Wu, H., 2020. Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide. Water Sci. Technol. 81, 2163–2175
  97. Zhang, J., Gao, D., Li, Q., Zhao, Yixuan, Li, L., Lin, H., Bi, Q., Zhao, Yucheng, 2020. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 704, 135931
  98. Zhang, J., Li, G., Yuan, X., Li, P., Yu, Y., Yang, W., Zhao, S., 2023. Reduction of ultrafiltration membrane fouling by the pretreatment removal of emerging pollutants: a review. Membranes (Basel). 13, 77
  99. Zhang, Yongli, Diehl, A., Lewandowski, A., Gopalakrishnan, K., Baker, T., 2020. Removal efficiency of micro-and nanoplastics (180 nm–125 μm) during drinking water treatment. Sci. Total Environ. 720, 137383
  100. Zhang, Yangyang, Luo, Y., Guo, X., Xia, T., Wang, T., Jia, H., Zhu, L., 2020. Charge mediated interaction of polystyrene nanoplastic (PSNP) with minerals in aqueous phase. Water Res. 178, 115861
  101. Zhao, X., Gao, P., Zhao, Z., Wu, Y., Sun, H., Liu, C., 2024. Microplastics release from face masks: Characteristics, influential factors, and potential risks. Sci. Total Environ. 171090
  102. Zhu, X., 2015. Optimization of elutriation device for filtration of microplastic particles from sediment. Mar. Pollut. Bull. 92, 69–72
  103. Ziajahromi, S., Neale, P.A., Rintoul, L., Leusch, F.D.L., 2017. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res. 112, 93–99

Last update:

No citation recorded.

Last update: 2025-08-20 08:42:40

No citation recorded.