skip to main content

Biodiesel Production through Catalytic Microwave In-situ Transesterification of Micro-algae (Chlorella sp.)

1Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2Chemical Engineering Department, Universitas Muslim Indonesia, Makassar 90231, Indonesia

Received: 30 Oct 2019; Revised: 28 Dec 2019; Accepted: 10 Jan 2020; Available online: 15 Feb 2020; Published: 18 Feb 2020.
Editor(s): H Hadiyanto

Citation Format:
Abstract
Aim of this research are to study and develop research related to the potential of Chlorella sp. into biodiesel with the help of microwaves in-situ transesterification by characterizing parameters such as microwave power (300; 450; 600 W) and reaction time (10; 30; 50 minutes) with catalyst concentration of KOH and molar ratio of microalga : methanol are 2% and 1:12 respectively and optimized by response surface methodology with Face Centered Central Composite Design (FCCCD). The study was carried out by dissolving the catalyst into methanol according to the variable which was then put into a reactor containing microalgae powder in the microwave and turned on according to the predetermined variable. After the reaction process is complete, the mixture is filtered and resuspended with methanol for 10 minutes to remove the remaining FAME and then the obtained filtrate is cooled. Water is added to the filtrate solution to facilitate the separation of hydrophilic components before being separated and pushed apart until 3 layers are formed. Amount of FAMEs in the first layer formed were extracted with n-hexane solution and washed with water and the FAME product obtained was then distilled to remove the remaining n hexane and then weighed. The results indicated that yield increased with increasing reaction time and microwave power with the best conditions of 50 minutes each and 440.53 watts with the highest yield reaching 35.72% (dry basis) through using of KOH catalysts with low concentrations, 2%.©2020. CBIORE-IJRED. All rights reserved
Fulltext View|Download
Keywords: Biodiesel; Chlorella sp.; In-situ Transesterification; Microalgae; Microwave
Funding: Directorate General of Research and Technology Strengthening Research and Development of Higher Education (RISTEK-DIKTI) of the Republic of Indonesia

Article Metrics:

Article Info
Section: Int. Conf. of Chemical Process and Product Engineering 2019
Language : EN
  1. Akubude, V. C., Nwaigwe, K. N., and Dintwa, E. (2018). Production of bodiesel from microalgae via nanocatalyzed trans-esterification process: A review. Materials Science for Energy Technologies. 2, 216-225
  2. Al-Ameri, M., and Al-Zuhair, S. (2019). Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochemical Engineering Journal, 141, 217–224
  3. Ananyev, G., Carrieri, D., and Dismukes, G. C. (2008). Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the Cyanobacterium Arthrospira (Spirulina) maxima. Applied and Environmental Microbiology, 74(19), 6102–6113
  4. Bahadar, A., and Bilal Khan, M. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128–148
  5. Boldor, D., (2012) Microwave Transesterification. In Encyclopedia of Agricultural, Food, and Biological Engineering-2 Volume Set (Print Version) (pp. 1-7). CRC Press
  6. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306
  7. Dai, Y. M., Chen, K. T., and Chen, C. C. (2014). Study of the microwave lipid extraction from microalgae for biodiesel production. Chemical Engineering Journal, 250, 267–273
  8. De Luna, M. D. G., Doliente, L. M. T., Ido, A. L., and Chung, T. W. (2017). In situ trans-esterification of Chlorella sp. microalgae using LiOH-pumice catalyst. Journal of Environmental Chemical Engineering, 5(3), 2830–2835
  9. Gude, V. G., Patil, P., Martinez-Guerra, E., and Deng, S. (2013). Microwave energy potential for biodiesel production. Sustainable Chemical Processes, 15, 1–31
  10. Kusuma H.S. and Mahfud, M. (2016). Response Surface Methodology for Optimization Studies of Microwaveassisted Extraction of Sandalwood Oil. J. Mater. Environ. Sci., 7(6), 1958-1971
  11. Kalsum, U., Kusuma H.S., Roesyadi, A. and Mahfud, M., (2018). Production Biodiesel via In-situ Trans-esterification from Chlorella sp. using Microwave with Base Catalyst. Korean Chem. Eng. Res., 56(5), 773-778
  12. Khan, S. A., Rashmi, Hussain, M. Z., Prasad, S., and Banerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361–2372. https://doi.org/10.1016/j.rser.2009.04.005
  13. Mahfud, M., Suryanto, A., Qadariyah, L., Suprapto, S., and Kusuma, H. S. (2018). Production of Fatty Acid Methyl Ester from Microalgae Using Microwave: Kinetic of Trans-esterification Reaction Using CaO Catalyst. Korean Chem. Eng. Res., 56(2), 275-280
  14. Martinez-Guerra, E., and Gude, V. G. (2016). Alcohol effect on microwave-ultrasound enhanced trans-esterification reaction. Chemical Engineering and Processing: Process Intensification, 101, 1–7
  15. Martinez-Guerra, E., Gude, V. G., Mondala, A., Holmes, W., and Hernandez, R. (2014). Microwave and ultrasound enhanced extractive-trans-esterification of algal lipids. Applied Energy, 129, 354–363
  16. Patil, P. D., Gude, V. G., Mannarswamy, A., Cooke, P., Munson-McGee, S., Nirmalakhandan, N., Lammers P., Deng, S. (2011). Optimization of microwave-assisted trans-esterification of dry algal biomass using response surface methodology. Bioresource Technology, 102(2), 1399–1405
  17. Prartono, T. R. I., Kawaroe, M., Sari, D. W., and Augustine, D. (2010). Fatty Acid Content of Indonesian Aquatic Microalgae. HAYATI Journal of Biosciences, 17(4), 196-200
  18. Quitain, A. T., Katoh, S., and Goto, M. (2011). Microwave-Assisted Synthesis of Biofuels. Biofuel Production-Recent Developments and Prospects, 16, 415-. Armando T. Quitain, Shunsaku Katoh and Motonobu Goto (2011). Microwave-Assisted Synthesis of Biofuels,Biofuel Production-Recent Developments and Prospects, Dr. Marco Aurelio Dos Santos Bernardes (Ed.), ISBN:978-953-307-478-8, InTech, Available from: http://www.intechopen com/ books/biofuel-production-recent-developments-and-prospects/microwave-assisted-synthesis-of-biofuels
  19. Ramesh, V., Narendrakumar, G., Thyagarajan, R., and Melchias, G. (2018). Biocatalysis and Agricultural Biotechnology A comparative analysis of biodiesel production and its properties from Leptolyngbya sp . BI-107 and Chlorella vulgaris under heat shock stress. Biocatalysis and Agricultural Biotechnology, 16, 502–506
  20. Velasquez-Orta, S. B., Lee, J. G. M., and Harvey, A. (2012). Alkaline in situ trans-esterification of Chlorella vulgaris. Fuel, 94, 544–550
  21. Zhang, Y., Li, Y., Zhang, X., and Tan, T. (2015). Biodiesel production by direct trans-esterification of microalgal biomass with co-solvent. Bioresource Technology, 196, 712–715

Last update:

  1. Optimization bio-oil production from Chlorella sp. through microwave-assisted pyrolysis using response surface methodology

    Mahfud Mahfud, Lailatul Qadariyah, Haqqyana Haqqyana, Viqhi Aswie. Green Energy and Resources, 2 (1), 2024. doi: 10.1016/j.gerr.2024.100057
  2. Effect of Compression Ratio on Performance and Emission Characteristics of Dual Spark Plug Ignition Engine Fueled With n-Butanol as Additive Fuel

    Ravikumar Ramegouda, Antony Alappath Joseph. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32364
  3. Techno-economic analysis of biodiesel and bioethanol production from Chlorella sp. algae biomass

    Samuel Pangeran Aletheia, Ahmad Syauqi, Kelvin, Kuntum Khaira, Muhammad Miftah Rafi, D. Dwi Anggoro, A.C. Kumoro, D. Dahnum, W.K. Restu, K.C. Sembiring, Indriyati, S.T.C.L. Ndruru, A.M.H. Putri. E3S Web of Conferences, 503 , 2024. doi: 10.1051/e3sconf/202450302004
  4. Controllable preparation of biomass derived mesoporous activated carbon supported nano-CaO catalysts for biodiesel production

    Hao Sun, Mingzhe Ma, Mengmeng Fan, Kang Sun, Wei Xu, Kui Wang, Baojun Li, Jianchun Jiang. Energy, 261 , 2022. doi: 10.1016/j.energy.2022.125369
  5. Production of biodiesel (isopropyl ester) from coconut oil by microwave assisted transesterification: parametric study and optimization

    Rheinanda Rachmaditasari, Muhamad Irfaid Darojat, Mahfud Mahfud. International Journal of Renewable Energy Development, 13 (4), 2024. doi: 10.61435/ijred.2024.60174
  6. Maximizing biodiesel yield of a non-edible chinaberry seed oil via microwave assisted transesterification process using response surface methodology and artificial neural network techniques

    Rehman Akhtar, Ameer Hamza, Luqman Razzaq, Fayaz Hussain, Saad Nawaz, Umer Nawaz, Zara Mukaddas, Tahir Abbas Jauhar, A.S. Silitonga, C Ahamed Saleel. Heliyon, 9 (11), 2023. doi: 10.1016/j.heliyon.2023.e22031
  7. Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production

    Viqhi Aswie, Lailatul Qadariyah, Mahfud Mahfud. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (1), 2021. doi: 10.9767/bcrec.16.1.10316.205-213
  8. Microalgae biomass: A multi-product biorefinery solution for sustainable energy, environmental remediation, and industrial symbiosis

    Safa Senan Mahmod, Maha Mohammad AL-Rajabi, Peer Mohamed Abdul, Gongtao Ding, Kamrul Fakir Kamarudin, Ahmad Anas Nagoor Gunny, Jian Ping Tan, Mohd Sobri Takriff. Algal Research, 85 , 2025. doi: 10.1016/j.algal.2024.103839
  9. Track to reach net-zero: Progress and pitfalls

    Suhaib A Bandh, Fayaz A Malla, Tuan-Dung Hoang, Irteza Qayoom, Haika Mohi-Ud-Din, Shahnaz Bashir, Richard Betts, Thanh Tuan Le, Duc Trong Nguyen Le, Nguyen Viet Linh Le, Huu Cuong Le, Dao Nam Cao. Energy & Environment, 2024. doi: 10.1177/0958305X241260793

Last update: 2024-12-26 09:40:53

No citation recorded.