skip to main content

Electrical Conductivity of Carbon Electrodes by Mixing Carbon Rod and Electrolyte Paste of Spent Battery

1Environmental Science Doctoral Program Diponegoro University, Semarang, 50241, Central Java, , Indonesia

2Instrumentation Engineering Departement, Polytechnic Energy and Minerals Akamigas, Cepu-Blora 58311, Central Java,, Indonesia

3Chemical Engineering Departement, Diponegoro University, Semarang, 50275, Central Java,, Indonesia

4 Electrical Engineering Departement, Diponegoro University, Semarang, 50275, Central Java,, Indonesia

View all affiliations
Received: 15 Jul 2020; Revised: 27 Oct 2020; Accepted: 3 Dec 2020; Available online: 8 Dec 2020; Published: 1 May 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

As a consequence of increasing battery use, spent batteries are increasingly contributing to solid waste. This situation has the potential to create a severe environmental problem. Thus, the utilization of these spent batteries, including the reuse of some components, is essential. The reusable components of the spent battery are carbon rods and electrolyte pastes. In this work, these components were utilized to prepare a carbon-based electrode for reverse electrodialysis. These electrodes can be an alternative to commercial Ti-based electrodes. The important characteristics of an electrode are the electrical conductivity, porosity, and surface area of the particles. This study aimed to determine the best electrical conductivity exhibited by various mixtures of carbon rods and electrolyte paste taken from spent batteries. The spent battery contained 95% carbon, and the electrolyte paste of the spent battery contained 64% carbon, 19% zinc, and 5% manganese. Before mixing, the carbon rods were powdered using ball mills for 4 h; 85.6% of particles were sized <1 μm. The best electrical conductivity was obtained from a mixture of carbon rods and electrolyte paste in the weight ratio of 7:2, with electrical conductivity, porosity, and surface area of 2.75 S/cm, 0.019 cc/g, and 15.936 m2/g, respectively.

Fulltext View|Download
Keywords: Spent Battery; Waste; Electrical Conductivity; Carbon Rods; Electrode; Electrolyte Paste

Article Metrics:

  1. Al Baroroh, L. A., Handayani, I. & Rosi, M., (2017). Effects Of Mn7+ Insertion on The Conductivity and Capacitance of Nanoporous Carbon From Coconut Shell. e-Proceeding of Engineering , 4(1), 605-611; ISSN : 2355-9365
  2. Bogeat, A.B, Franco, M.A, Gonzalez, C.F, Garcıa, A.M, & Serrano, V.G, (2014). Electrical conductivity of activated carbon–metal oxide nanocomposites under compression : a comparison study. Phys. Chem. Chem. Phys, 16, 25161-25175; DOI: 10.1039/c4cp03952a
  3. Buchmann, I., (2020). Battery University. [Online] Available at: https://batteryuniversity.com/learn/archive/battery_statistics [Accessed 23 November 2020]
  4. Choi, J., (2010). Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separation and Purification Technology 70, 362-366; DOI: 10.1016/j.seppur.2009.10.023
  5. Daraghmeh, A., Hussain, S., Saadeddin, I., Servera, L., Xuriguera, E., Cornet, A., & Cirera, A., (2017). A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Nanoscale Research Letters, 12, 639-648; DOI: 10.1186/s11671-017-2415-z
  6. Eurostat, (2020). Eurostat Statistic Explained. [Online] Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?stable=0&title=Waste_statistics_-_recycling_of_batteries_and_accumulators#Sales_and_collection_of_portable_batteries_and_accumulators[Accessed 23 November 2020]
  7. Frackowiak, E. & Beguin, F., (2001). Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937–950; DOI: doi.org/10.1016/S0008-6223(00)00183-4
  8. González, J., Stoeckli, F. & Centeno, T., (2011). The role of the electric conductivity of carbons in the electrochemical capacitor performance. Journal of Electroanalytical Chemistry, 657, 176-180; DOI : doi.org/10.1016/j.jelechem.2011.03.025
  9. Haque Khan, M. & Kurny, A., (2012). Characterization of Spent Household Zinc-Carbon Dry Cell Batteries in the Process of Recovery of Value Metals. Journal of Minerals & Materials Characterization & Engineering, 11(66), 641-651; DOI: 10.4236/jmmce.2012.116047
  10. Hidayat, S., Putra, R., Alamsyah, W., Saat, A.H., & Riveli, N. (2017). Pengaruh Penambahan Karbon dan PVdF terhadap Konduktivitas Listrik Bahan Komposit LiFePO4. Prosiding Pertemuan Ilmiah XXXI HFI Jateng & DIY, 81-84; ISSN : 0853-0823
  11. Inoue, G. & Kawase, M., (2017). Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries. Journal of Power Sources, 342, 476-488; DOI :dx.doi.org/10.1016/j.jpowsour.2016.12.098
  12. Linden, D. & Reddy, T. B., (2002). "8" Handbook of batteries. s.l.:McGraw-Hill, ISBN 978-0-07-135978-8.
  13. Nindhia, T. G. T., Surata, I. W., Swastika, I. D. P. & Wahyudi, I. M., (2016). Reuse of Carbon Paste from Used Zinc-Carbon Battery for Biogas Desulfurizer with Clay as a Binder. International Journal of Environmental Science and Development, 7, 203-206; DOI: 10.7763/IJESD.2016.V7.768
  14. Portet, C., Yushin, G. & Gogotsi, Y., (2008). Effect of Carbon Particle Size on Electrochemical Performance of EDLC. Journal of The Electrochemical Society, 155(7), A531-A536; DOI: 10.1149/1.2918304
  15. Senzai, Y., (2019). Battery Association of Japan. [Online] Available at: http://www.baj.or.jp/e/statistics/01.html [Accessed 23 November 2020]
  16. Shabeebaa, P., Thayyil, M. S., Pillai, M. P., Soufeena, P. P., & Niveditha, C. V. (2018). Electrochemical Investigation of Activated Carbon Electrode Supercapacitors. Russian Journal of Electrochemistry, 54(3), 302-308; ISSN 1023-1935
  17. Susanto, H., Fitrianingtyas, M., Samsudin, A. M. & Syakur, A., (2017). Experimental study of the natural organic matters effect on the power generation of reverse electrodialysis. International Journal of Energy Research, 41(10), 1474-1486; DOI: 10.1002/er.3728
  18. Taherian, R., (2019). The Theory of Electrical Conductivity. In: Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications. s.l.:Elsevier Inc, 1-18; DOI: doi.org/10.1016/B978-0-12-812541-0.00001-X
  19. Topsoe, H., (1966). Geometric Factor of Four Point Resistivity Measurement, Vedbaek: Semiconductor Division
  20. Veerman, J., Saakes, M., Metz, S. & Harmsen, G. J., (2010). Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant. Environ. Sci. Technol, 44, 9207–9212; DOI : doi.org/10.1021/es1009345
  21. Vilar, E., de Fretias, N., de Lirio, F. & de Sousa, F., (1998). Study of Electrical Conductivity of Graphite Felt Employed as A Porous Electrode. Brazilian Journal of Chemical Engineering, 15(3); DOI: dx.doi.org/10.1590/S0104-66321998000300007
  22. Waremra, R. S. & Betaubun, P., (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences 73, ICENIS 2018, DOI : doi.org/10.1051/e3sconf/20187313019
  23. Xingtao, X., Junfeng, L., Yuquan, L., Bing, Ni., Xinjuan, L., & Likun, P., (2018). Selection of Carbon Electrode Materials. In: Charge and Energy Storage in Electrical Double Layers. London: Academic Press, 65-83; DOI: 10.1016/B978-0-12-811370-7.00004-8
  24. Yingjie, Z., Jia, G. & Ting, L., (2012). Research Progress on Binder of Activated Carbon Electrode. Advanced Materials Research, 549, 780-784, ISSN: 1662-8985; DOI : 10.4028/www.scientific.net/AMR.549.780

Last update:

  1. Review of Materials for Electrodes and Electrolytes of Lithium Batteries

    E. Podlesnov, M.G. Nigamatdianov, M.V. Dorogov. Reviews on Advanced Materials and Technologies, 4 (4), 2022. doi: 10.17586/2687-0568-2022-4-4-39-61
  2. Waterborne conductive carbon paste with an eco-friendly binder

    Mohammad Shadabfar, Morteza Ehsani, Hossein Ali Khonakdar, Majid Abdouss, Tayebeh Ameri. Cellulose, 30 (3), 2023. doi: 10.1007/s10570-022-04998-5
  3. Bismuth sulfide/coconut fiber based-activated carbon composite: synthesis, characterization, and electrochemical performance

    Yayuk Astuti, AnnidaMuhimatul Latifah, Arnelli, Ahmad Suseno, Titik Lestariningsih. Emergent Materials, 6 (4), 2023. doi: 10.1007/s42247-023-00529-5
  4. The Role of Membrane, Feed Characteristic and Process Parameters on RED Power Generation

    Heru Susanto, Meike Fitrianingtyas, I Nyoman Widiasa, Titik Istirokhatun, Yunita Fahni, Assalaam Umar Abdurahman. International Journal of Renewable Energy Development, 12 (1), 2023. doi: 10.14710/ijred.2023.49775
  5. CHARACTERIZATION OF ELECTRICAL PROPERTIES OF 3D PRINTED BIOSENSORS WITH VARIOUS ELECTRODE GEOMETRIES

    SORINA GOGONEAŢĂ, CĂTĂLIN MĂRCULESCU, ALEXANDRU M. MOREGA. REVUE ROUMAINE DES SCIENCES TECHNIQUES — SÉRIE ÉLECTROTECHNIQUE ET ÉNERGÉTIQUE, 68 (2), 2023. doi: 10.59277/RRST-EE.2023.68.2.21
  6. The Role of Membrane, Feed characteristic and Process Parameter on RED Power Generation

    Heru Susanto, Meike Fitrianingtyas, I Nyoman Widiasa, Titik Istirokhatun, Yunita Fahni, Assalaam Abdurahman. International Journal of Renewable Energy Development, 12 (1), 2023. doi: 10.14710/ijred.2023.49775

Last update: 2024-04-19 04:07:58

No citation recorded.