skip to main content

Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production

Ika Dyah Widharyanti1 Muhammad Andiri Hendrawan1Marcelinus Christwardana2

1Department of Chemical Engineering, Pertamina University, Jl. Teuku Nyak Arief, Simprug, Jakarta, 12220, Indonesia

2Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspitek Serpong, South Tangerang, Banten, 15320,, Indonesia

Received: 23 Aug 2020; Revised: 30 Sep 2020; Accepted: 9 Oct 2020; Published: 1 Feb 2021; Available online: 12 Oct 2020.
Editor(s): Marcelinus Christwardana, H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by CBIORE
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The plant microbial fuel cell (PMFC) is a technology built to produce renewable and sustainable electricityin order to meet the increasing global demand. This study demonstrates the potential application of PMFC in swamps dominated by water hyacinth to produce biological energy and plant biomass.In this research, the plant was integrated into a microbial fuel cell that adopts various types of anode materials such as carbon felt, iron and zinc, with a varying distance of 10 and 20 cm between the anode and cathode. Organic compounds emerging from the photosynthesis process were deposited by plant roots, which were then oxidized by bacteria in the mud media. The result showed that the developed PMFC produced a voltage and current density of 244.8 mV and 185.4 mA/m2, respectively, for 30 days, with a maximum power of 100.2 mW/m2 in the cells using zinc as anode material with an electrode spacing of 10 cm. Furthermore, the pH value on PMFC with a longer electrode was higher than the shorter distance due to the protons' inability to move from anode to cathode against the force of gravity. In conclusion, PMFC which utilizes water hyacinth has a good performance in converting chemical energy from the substrate into electrical energy, and has the potential to be developed in underdeveloped areas.

Fulltext View|Download
Keywords: Plant Microbial Fuel Cell; Renewable energy; Bioelectricity; Membraneless; Swamp

Article Metrics:

  1. Aghababaie, M., Farhadian, M., Jeihanipour, A., & Biria, D. (2015). Effective factors on the performance of microbial fuel cells in wastewater treatment – a review. Environmental Technology Reviews, 4(1), 71–89. doi: 10.1080/09593330.2015.1077896
  2. Ahn, J. H., Jeong, W. S., Choi, M. Y., Kim, B. Y., Song, J., & Weon, H. Y. (2014). Phylogenetic diversity of dominant bacterial and archaeal communities in plant-microbial fuel cells using rice plants. Journal of Microbiologu and Biotechnology, 24, 1707. doi: 10.4014/jmb.1408.08053
  3. ASM International. Handbook Committee. (1990). ASM handbook (Vol. 19). Asm International
  4. Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254-263. doi: 10.1080/15435075.2018.1432487
  5. Bhatt, V. (2016). Thermodynamics and Kinetics of Complex Formation. In Essentials of Coordination Chemistry (pp. 111–137). Elsevier
  6. Bimanatya, T. E., & Widodo, T. (2018). Fossil Fuels Consumption, Carbon Emissions, and Economic Growth in Indonesia. International Journal of Energy Economics and Policy, 8(4), 90-97
  7. Bombelli, P., Iyer, D. M. R., Covshoff, S., McCormick, A. J., Yunus, K., Hibberd, J. M., ... & Howe, C. J. (2013). Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Applied microbiology and biotechnology, 97(1), 429-438. doi: 10.1007/s00253-012-4473-6
  8. Cabezas, A., Pommerenke, B., Boon, N., & Friedrich, M. W. (2015). G eobacter, A naeromyxobacter and A naerolineae populations are enriched on anodes of root exudate‐driven microbial fuel cells in rice field soil. Environmental Microbiology Reports, 7(3), 489-497. doi: 10.1111/1758-2229.12277
  9. Christwardana, M., Hadiyanto, H., Motto, S. A., Sudarno, S., & Haryani, K. (2020). Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass and Bioenergy, 139, 105617. doi: 10.1016/j.biombioe.2020.105617
  10. Di, L., Li, Y., Nie, L., Wang, S., & Kong, F. (2020). Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution. Journal of Hazardous Materials, 394, 122542. doi: 10.1016/j.jhazmat.2020.122542
  11. Dubey, R., & Guruviah, V. (2019). Review of carbon-based electrode materials for supercapacitor energy storage. Ionics, 25(4), 1419-1445. doi: 10.1007/s11581-019-02874-0
  12. Gaurav, G. K., Mehmood, T., Cheng, L., Klemeš, J. J., & Shrivastava, D. K. (2020). Water hyacinth as a biomass: A review. Journal of Cleaner Production, 122214. doi: 10.1016/j.jclepro.2020.122214
  13. Gómora-Hernández, J. C., Serment-Guerrero, J. H., Carreño-de-León, M. C., & Flores-Alamo, N. (2020). Voltage production in a plant microbial fuel cell using Agapanthus Africanus. Revista Mexicana de Ingeniería Química, 19(1), 227-237. doi: 10.24275/rmiq/IA542
  14. Hadi, A., Inubushi, K., Furukawa, Y., Purnomo, E., Rasmadi, M., & Tsuruta, H. (2005). Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutrient Cycling in Agroecosystems, 71(1), 73-80. doi: 10.1007/s10705-004-0380-2
  15. Helder, M., Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2012). The flat-plate plant-microbial fuel cell: the effect of a new design on internal resistances. Biotechnology for Biofuels, 5(1), 70. doi: 10.1186/1754-6834-5-70
  16. Helder, M., Strik, D. P., Timmers, R. A., Raes, S. M., Hamelers, H. V., & Buisman, C. J. (2013). Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass and Bioenergy, 51, 1-7. doi: 10.1016/j.biombioe.2012.10.011
  17. Kauffman, G. B. (1988). The Bronsted-Lowry acid base concept. Journal of Chemical Education, 65(1), 28. doi: 10.1021/ed065p28
  18. Koo, B.-. J., Adriano, D. C., Bolan, N. S., & Barton, C. D. (2005). Root Exudates and Microorganisms. In Encyclopedia of Soils in the Environment (pp. 421–428). Elsevier
  19. Kudke, M., Shinde, A. A., & Saptarshi, S. (2017). Green Electricity Production from Living Plant and Microbial Fuel Cell. International journal of Advance Research in Science and Engineering, 6, 459-466
  20. Liu, H. (2008). Microbial Fuel Cell: Novel Anaerobic Biotechnology for Energy Generation from Wastewater. In S. K. Khanal (Ed.), Anaerobic Biotechnology for Bioenergy Production (pp. 221–246). Wiley-Blackwell.
  21. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial Fuel Cells: Methodology and Technology †. Environmental Science & Technology, 40(17), 5181–5192. doi: 10.1021/es0605016
  22. Lott, M. C., Pye, S., & Dodds, P. E. (2017). Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom. Energy Policy, 101, 42–51. doi: 10.1016/j.enpol.2016.11.028
  23. Lu, G. W., & Gao, P. (2010). Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems (pp. 59–94). Elsevier
  24. Md Khudzari, J., Gariépy, Y., Kurian, J., Tartakovsky, B., & Raghavan, G. S. V. (2019). Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochemical Engineering Journal, 141, 190–199. doi: 10.1016/j.bej.2018.10.012
  25. Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 1–9.
  26. Novikov, D., Molodkina, L., Chusov, A., & Vedmetskii, Y. (2015). Electrokinetic and Electroconductivity Properties of Filtering Material Aqualat. Procedia Engineering, 117, 264–272. doi: 10.1016/j.proeng.2015.08.161
  27. Pamintuan, K. R. S., Gonzales, A. J. S., Estefanio, B. M. M., & Bartolo, B. L. S. (2018). Simultaneous phytoremediation of Ni 2+ and bioelectricity generation in a plant-microbial fuel cell assembly using water hyacinth ( Eichhornia crassipes ). IOP Conference Series: Earth and Environmental Science, 191, 012093. doi: 10.1088/1755-1315/191/1/012093
  28. Park, J., Dilasari, B., Kim, Y., Kim, K., Lee, C. K., & Kwon, K. (2014). Passivation Behavior and Surface Resistance of Electrodeposited Nickel-Carbon Composites. Electrochemistry, 82(7), 561-565. doi: 10.5796/electrochemistry.82.561
  29. Prasad, J., & Tripathi, R. K. (2018). Scale up sediment microbial fuel cell for powering Led lighting. International Journal of Renewable Energy Development, 7(1), 53. doi: 10.14710/ijred.7.1.53-58
  30. Reddy, T. B. (2011). Linden's handbook of batteries (Vol. 4). New York: Mcgraw-hill
  31. Sangeetha, T., & Muthukumar, M. (2013). Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell. Environmental Progress & Sustainable Energy, 32(2), 390–395. doi: 10.1002/ep.11603
  32. Sarma, P. J., & Mohanty, K. (2018). Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of bioscience and bioengineering, 126, 404-410. doi: 10.1016/j.jbiosc.2018.03.009
  33. Shahbaz, M., Hye, Q. M. A., Tiwari, A. K., & Leitão, N. C. (2013). Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renewable and Sustainable Energy Reviews, 25, 109-121. doi: 10.1016/j.rser.2013.04.009
  34. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors affecting electric output from rice-paddy microbial fuel cells. Bioscience, biotechnology, and biochemistry, 74(6), 1271-1273. doi: 10.1271/bbb.90852
  35. Tapia, N. F., Rojas, C., Bonilla, C. A., & Vargas, I. T. (2017). Evaluation of Sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecological Engineering, 108, 203-210. doi: 10.1016/j.ecoleng.2017.08.017
  36. Timmers, R. A., Strik, D. P. B. T. B., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology, 86(3), 973–981. doi: 10.1007/s00253-010-2440-7
  37. Wetser, K. (2016). Electricity from wetlands: Technology assessment of the tubular Plant Microbial Fuel Cell with an integrated biocathode. Doctoral dissertation, Wageningen University
  38. Wetser, K., Liu, J., Buisman, C., & Strik, D. (2015). Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils. Biomass and Bioenergy, 83, 543–550. doi: 10.1016/j.biombioe.2015.11.006
  39. Wilberforce, T., El-Hassan, Z., Khatib, F. N., Al Makky, A., Baroutaji, A., Carton, J. G., & Olabi, A. G. (2017). Developments of electric cars and fuel cell hydrogen electric cars. International Journal of Hydrogen Energy, 42(40), 25695–25734. doi: 10.1016/j.ijhydene.2017.07.054
  40. Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531. doi: 10.1039/B813846J
  41. Zhou, Y., Xu, D., Xiao, E., Xu, D., Xu, P., Zhang, X., Zhou, Q., He, F., & Wu, Z. (2018). Relationship between electrogenic performance and physiological change of four wetland plants in constructed wetland-microbial fuel cells during non-growing seasons. Journal of Environmental Sciences, 70, 54–62. doi: 10.1016/j.jes.2017.11.008

Last update: 2021-06-21 15:43:30

No citation recorded.

Last update: 2021-06-21 15:43:30

No citation recorded.