1Department of Zoology, Centre for Water Quality and Algae Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
2Faculty of Graduate Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
BibTex Citation Data :
@article{IJRED35527, author = {Weerasinghe Mudiyanselage Weerasinghe and Dampe Madusanka and Pathmalal Manage}, title = {Isolation and Identification of Cellulase Producing and Sugar Fermenting Bacteria for Second-Generation Bioethanol Production}, journal = {International Journal of Renewable Energy Development}, volume = {10}, number = {4}, year = {2021}, keywords = {Bioethanol; Carboxy methyl cellulose; Cellulase producing bacteria; Solid phase micro-extraction; Sugar fermenting bacteria}, abstract = { Over the last decades, the negative impacts of fossil fuel on the environment and increasing demand for energy due to the unavoidable depletion of fossil fuels, has transformed the world’s interests towards alternative fuels. In particular, bioethanol production from cellulosic biomass for the transportation sector has been incrementing since the last decade. The bacterial pathway for bioethanol production is a relatively novel concept and the present study focused on the isolation of potential “cellulase-producing” bacteria from cow dung, compost soil, and termite gut and isolating sugar fermenting bacteria from palm wine. To select potential candidates for cellulase enzyme production, primary and secondary assays were conducted using the Gram’s iodine stain in Carboxy Methyl Cellulose (CMC) medium and the Dinitrosalicylic acid (DNS) assays, respectively. Durham tube assay and Solid-Phase Micro-Extraction (SPME) coupled with Gas C hromatography-Mass Spectrometry (GC-MS) was used to evaluate the sugar fermenting efficiency of the isolated bacteria. Out of 48 bacterial isolates, 27 showed cellulase activity where Nocardiopsis sp. (S-6) demonstrated the highest extracellular crude enzyme activity of endoglucanase (1.56±0.021 U) and total cellulase activity (0.93±0.012 U). The second-highest extracellular crude enzyme activity of endoglucanase (0.21±0.021 U) and total cellulase activity (0.35±0.021 U) was recorded by Bacillus sp. (T-4). Out of a total of 8 bacterial isolates, Achromobacter sp. (PW-7) was positive for sugar fermentation resulting in 3.07% of ethanol in broth medium at 48 h incubation. The results of the study revealed that Nocardiopsis sp. (S-6) had the highest cellulase enzyme activity. However, the highest ethanol percentage was achieved with by having both Bacillus sp . (T-4) and Achromobacter sp. (PW-7) for the simultaneous saccharification and fermentation (SSF) method, as compared to separate hydrolysis and fermentation (SHF) methodologies . }, pages = {699--711} doi = {10.14710/ijred.2021.35527}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/35527} }
Refworks Citation Data :
Over the last decades, the negative impacts of fossil fuel on the environment and increasing demand for energy due to the unavoidable depletion of fossil fuels, has transformed the world’s interests towards alternative fuels. In particular, bioethanol production from cellulosic biomass for the transportation sector has been incrementing since the last decade. The bacterial pathway for bioethanol production is a relatively novel concept and the present study focused on the isolation of potential “cellulase-producing” bacteria from cow dung, compost soil, and termite gut and isolating sugar fermenting bacteria from palm wine. To select potential candidates for cellulase enzyme production, primary and secondary assays were conducted using the Gram’s iodine stain in Carboxy Methyl Cellulose (CMC) medium and the Dinitrosalicylic acid (DNS) assays, respectively. Durham tube assay and Solid-Phase Micro-Extraction (SPME) coupled with Gas Chromatography-Mass Spectrometry (GC-MS) was used to evaluate the sugar fermenting efficiency of the isolated bacteria. Out of 48 bacterial isolates, 27 showed cellulase activity where Nocardiopsis sp. (S-6) demonstrated the highest extracellular crude enzyme activity of endoglucanase (1.56±0.021 U) and total cellulase activity (0.93±0.012 U). The second-highest extracellular crude enzyme activity of endoglucanase (0.21±0.021 U) and total cellulase activity (0.35±0.021 U) was recorded by Bacillus sp. (T-4). Out of a total of 8 bacterial isolates, Achromobacter sp. (PW-7) was positive for sugar fermentation resulting in 3.07% of ethanol in broth medium at 48 h incubation. The results of the study revealed that Nocardiopsis sp. (S-6) had the highest cellulase enzyme activity. However, the highest ethanol percentage was achieved with by having both Bacillus sp. (T-4) and Achromobacter sp. (PW-7) for the simultaneous saccharification and fermentation (SSF) method, as compared to separate hydrolysis and fermentation (SHF) methodologies.
Article Metrics:
Last update:
Enhanced bioconversion of grass straw into bioethanol by a novel consortium of lignocellulolytic bacteria aided by combined alkaline-acid pretreatment
Fuel Quality from Thermochemical Conversion and Biological Treatment of Biomass
Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis
Recent Technologies for Waste to Clean Energy and its Utilization
Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends
Sustainable and Clean Energy Production Technologies
A Review of the Technological Aspects and Process Optimization of Bioethanol Production From Corn Stover Biomass: Pretreatment Process, Hydrolysis, Fermentation, Purification Process, and Future Perspective
Cellulolytic and Ethanologenic Evaluation of Heterotermes indicola’s Gut-Associated Bacterial Isolates
Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route
Last update: 2024-11-21 02:57:32
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.