skip to main content

Examining the Relationship Between Energy Consumption, Economic Growth and Environmental Degradation in Indonesia: Do Capital and Trade Openness Matter?

1Department of Economics and Development Studies, Faculty of Economics and Business, Jenderal Soedirman University, Purwokerto, Indonesia

2Department of Business Administration, Specialization of Managerial Economics, Faculty of Commercial Studies, University of Gezira, Al Hilaliya, Sudan

Received: 4 Apr 2021; Revised: 19 May 2021; Accepted: 27 May 2021; Available online: 2 Jun 2021; Published: 1 Nov 2021.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This paper examines the relationship between energy consumption, economic growth, and environmental degradation in Indonesia in 1965-2018 with the inclusion of gross capital formation and trade openness as relevant factors. The autoregressive distributed lag model to cointegration, fully modified ordinary least squares, dynamic ordinary least squares, and canonical cointegrating regression approach applied to estimate this relationship. The result of cointegration confirms the existence of a cointegration relationship between energy consumption, economic growth, gross fixed capital formation, trade openness, and environmental degradation. The empirical result, in the long run, indicates that energy consumption, economic growth, and trade openness have a positive relationship with environmental degradation. However, the gross fixed capital formation was found to be negatively associated with environmental degradation. It implies that gross fixed capital formation plays a pivotal role in reducing environmental degradation in Indonesia.  The error correction model coefficient indicates that the deviation of CO2 emissions from its long run equilibrium will be adjusted by 0.53% through the short run channel per annum. The findings of this paper propose implementing an energy policy that focuses on energy from environmentally friendly sources. It is also recommended to reverse the effect of openness to the international markets to improve and facilitate access to advanced and environmentally friendly technologies to mitigate environmental degradation and improve environmental quality.

Fulltext View|Download
Keywords: Energy consumption; Economic growth; Capital formation; Environmental degradation; ARDL

Article Metrics:

  1. Acheampong, A. O. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Economics, 74, 677–692. https://doi.org/10.1016/j.eneco.2018.07.022
  2. Adebayo, T., Akinsola, G., Odugbesan, J., & Olanrewaju, V. (2021). Determinants of Environmental Degradation in Thailand: Empirical Evidence from ARDL and Wavelet Coherence Approaches. Pollution, 7(1), 181–196. https://doi.org/10.22059/poll.2020.309083.885
  3. Adebayo, T. S. (2021). Testing the EKC Hypothesis in Indonesia : Empirical Evidence from the ARDL-Based Bounds and Wavelet Coherence Approaches. Applied Economics Journal, 28 (1), 1–27
  4. Adebayo, T. S., & Akinsola, G. D. (2021). Investigating the Causal Linkage among Economic Growth, Energy Consumption and CO2 Emissions in Thailand: An Application of the Wavelet Coherence Approach. International Journal of Renewable Energy Development, 10(1), 17–26. https://doi.org/10.14710/ijred.2021.32233
  5. Ahmad, N., Du, L., Lu, J., Wang, J., Li, H. Z., & Hashmi, M. Z. (2017). Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy, 123, 164–172. https://doi.org/10.1016/j.energy.2016.12.106
  6. Andreoni, V., & Galmarini, S. (2016). Drivers in CO2 emissions variation: A decomposition analysis for 33 world countries. Energy, 103, 27–37. https://doi.org/10.1016/j.energy.2016.02.096
  7. Ansari, M. A., Haider, S., & Khan, N. A. (2020). Does trade openness affects global carbon dioxide emissions: Evidence from the top CO2 emitters. Management of Environmental Quality: An International Journal, 31(1), 32–53. https://doi.org/10.1108/MEQ-12-2018-0205
  8. Bukhari, N., Shahzadi, K., & Shakil Ahmad, M. (2014). Consequence of FDI on CO2 emissions in case of Pakistan. Middle - East Journal of Scientific Research, 20(9), 1183–1189. https://doi.org/10.5829/idosi.mejsr.2014.20.09.13595
  9. Chen, F., Jiang, G., & Kitila, G. M. (2021). Trade Openness and CO2 Emissions: The Heterogeneous and Mediating Effects for the Belt and Road Countries. Sustainability, 13(4), 1958. https://doi.org/10.3390/su13041958
  10. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root, Journal of the American Statistical Association, Vol. No. 366, pp. . 74(March 2013), 427–431
  11. Dogan, E., & Turkekul, B. (2016). CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environmental Science and Pollution Research, 23(2), 1203–1213. https://doi.org/10.1007/s11356-015-5323-8
  12. Farhani, S., Chaibi, A., & Rault, C. (2014). CO2 emissions, output, energy consumption, and trade in Tunisia. Economic Modelling, 38, 426–434. https://doi.org/10.1016/j.econmod.2014.01.025
  13. Gasimli, O., ul Haq, I., Gamage, S. K. N., Shihadeh, F., Rajapakshe, P. S. K., & Shafiq, M. (2019). Energy, Trade, Urbanization and Environmental Degradation Nexus in Sri Lanka: Bounds Testing Approach. Energies, 12(9), 1–15. https://doi.org/10.3390/en12091655
  14. Hamit-Haggar, M. (2012). Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Economics, 34(1), 358–364. https://doi.org/10.1016/j.eneco.2011.06.005
  15. Jafari, Y., Othman, J., & Nor, A. H. S. M. (2012). Energy consumption, economic growth and environmental pollutants in Indonesia. Journal of Policy Modeling, 34(6), 879–889. https://doi.org/10.1016/j.jpolmod.2012.05.020
  16. Jamel, L., & Abdelkader, D. (2016). Do energy consumption and economic growth lead to environmental degradation? Evidence from Asian economies. Cogent Economics and Finance, 4(1). https://doi.org/10.1080/23322039.2016.1170653
  17. Jayanthakumaran, K., Verma, R., & Liu, Y. (2012). CO 2 emissions, energy consumption, trade and income: A comparative analysis of China and India. Energy Policy, 42(June 2011), 450–460. https://doi.org/10.1016/j.enpol.2011.12.010
  18. Kasman, A., & Duman, Y. S. (2015). CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Economic Modelling, 44, 97–103. https://doi.org/10.1016/j.econmod.2014.10.022
  19. Koengkan, M., Losekann, L. D., & Fuinhas, J. A. (2019). The relationship between economic growth, consumption of energy, and environmental degradation: renewed evidence from Andean community nations. Environment Systems and Decisions, 39(1), 95–107. https://doi.org/10.1007/s10669-018-9698-1
  20. Ling, C. H., Ahmed, K., Binti Muhamad, R., & Shahbaz, M. (2015). Decomposing the trade-environment nexus for Malaysia: what do the technique, scale, composition, and comparative advantage effect indicate? Environmental Science and Pollution Research, 22(24), 20131–20142. https://doi.org/10.1007/s11356-015-5217-9
  21. Majeed, M. T., Tauqir, A., Mazhar, M., & Samreen, I. (2021). Asymmetric effects of energy consumption and economic growth on ecological footprint: new evidence from Pakistan. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13130-2
  22. Mesagan, Ekundayo P., Isola, W. A., & Ajide, K. B. (2019). The capital investment channel of environmental improvement: evidence from BRICS. Environment, Development and Sustainability, 21(4), 1561–1582. https://doi.org/10.1007/s10668-018-0110-6
  23. Mesagan, Ekundayo Peter, & Nwachukwu, M. I. (2018). Determinants of Environmental Quality in Nigeria: Assessing the Role of Financial Development. Econometric Research in Finance, 3(1), 55–78. https://doi.org/10.33119/erfin.2018.3.1.3
  24. OECD. (2021). Trade and the environment - OECD. Retrieved April 3, 2021, from https://www.oecd.org/trade/topics/trade-and-the-environment/
  25. Ozcan, B., Tzeremes, P. G., & Tzeremes, N. G. (2020). Energy consumption, economic growth and environmental degradation in OECD countries. Economic Modelling, 84(September 2018), 203–213. https://doi.org/10.1016/j.econmod.2019.04.010
  26. Ozturk, I., & Acaravci, A. (2010). CO2 emissions, energy consumption and economic growth in Turkey. Renewable and Sustainable Energy Reviews, 14(9), 3220–3225. https://doi.org/10.1016/j.rser.2010.07.005
  27. Pala, A. (2020). Energy and economic growth in G20 countries: Panel cointegration analysis. Economics and Business Letters, 9(2), 56–72. https://doi.org/10.17811/ebl.9.2.2020.56-72
  28. Pao, H. T., & Tsai, C. M. (2010). CO2 emissions, energy consumption and economic growth in BRIC countries. Energy Policy, 38(12), 7850–7860. https://doi.org/10.1016/j.enpol.2010.08.045
  29. Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. https://doi.org/10.1002/jae.616
  30. Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
  31. Phrakhruopatnontakitti, Watthanabut, B., & Jermsittiparsert, K. (2020). Energy consumption, economic growth and environmental degradation in 4 Asian countries: Malaysia, Myanmar, Vietnam and Thailand. International Journal of Energy Economics and Policy, 10(2), 529–539. https://doi.org/10.32479/ijeep.9229
  32. Purnama, H., Gunarto, T., & Budiarty, I. (2020). Effects of energy consumption, economic growth and urbanization on Indonesian environmental quality. International Journal of Energy Economics and Policy, 10(6), 580–587. https://doi.org/10.32479/ijeep.10586
  33. Rauf, A., Liu, X., Amin, W., Ozturk, I., Rehman, O. U., & Sarwar, S. (2018). Energy and ecological sustainability: Challenges and panoramas in belt and road initiative countries. Sustainability (Switzerland), 10(8), 1–21. https://doi.org/10.3390/su10082743
  34. Shahbaz, M., Hye, Q. M. A., Tiwari, A. K., & Leitão, N. C. (2013). Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia. Renewable and Sustainable Energy Reviews, 25, 109–121. https://doi.org/10.1016/j.rser.2013.04.009
  35. Soytas, U., Sari, R., & Ewing, B. T. (2007). Energy consumption, income, and carbon emissions in the United States. Ecological Economics, 62(3–4), 482–489. https://doi.org/10.1016/j.ecolecon.2006.07.009
  36. Statistical Review of World Energy | Energy economics | Home. (2021). https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
  37. Tzeremes, P. (2018). Time-varying causality between energy consumption, CO2 emissions, and economic growth: evidence from US states. Environmental Science and Pollution Research, 25(6), 6044–6060. https://doi.org/10.1007/s11356-017-0979-x
  38. World Bank. (2021). World Development Indicators | DataBank. https://databank.worldbank.org/source/world-development-indicators
  39. Zhang, L., Li, Z., Kirikkaleli, D., Adebayo, T. S., Adeshola, I., & Akinsola, G. D. (2021). Modeling CO2 emissions in Malaysia: an application of Maki cointegration and wavelet coherence tests. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-12430-x

Last update:

  1. Mediating role of stock market volatility to evaluate asymmetries in the growth-degradation nexus in Nigeria

    Abdullah AlGhazali, Nana Ize Musa, Saifullahi Sani Ibrahim, Ahmed Samour. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.52322
  2. The Impact of Industrialization, Trade Openness, Financial Development, and Energy Consumption on Economic Growth in Indonesia

    Khalid Eltayeb Elfaki, Rossanto Dwi Handoyo, Kabiru Hannafi Ibrahim. Economies, 9 (4), 2021. doi: 10.3390/economies9040174
  3. Does domestic investment matter? A multivariate time series analysis of the energy-CO2 emission-growth nexus in Ghana

    Bernard Boamah Bekoe, Junfei Chen, Tasinda Odette Tougem, Emmanuel Nketiah, Kulena Sakuwunda. Environmental Science and Pollution Research, 30 (17), 2023. doi: 10.1007/s11356-023-25347-4
  4. Asymmetric effects of digitalization, natural resources, capital formation, and green innovations on environmental sustainability in ASEAN countries

    Chen Lin. Resources Policy, 92 , 2024. doi: 10.1016/j.resourpol.2024.104995
  5. On the nexus between industrialization and carbon emissions: evidence from ASEAN + 3 economies

    Khalid Eltayeb Elfaki, Zeeshan Khan, Dervis Kirikkaleli, Naveed Khan. Environmental Science and Pollution Research, 29 (21), 2022. doi: 10.1007/s11356-022-18560-0
  6. International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?

    Chen Wang, Khalid Eltayeb Elfaki, Xin Zhao, Yuping Shang, Zeeshan Khan. Sustainable Development, 30 (6), 2022. doi: 10.1002/sd.2320
  7. The crucial roles of ICT, renewable energy sources, industrialization, and institutional quality in achieving environmental sustainability in BRICS

    Charles Shaaba Saba, Charles Raoul Tchuinkam Djemo, Nicholas Ngepah. Environmental Science and Pollution Research, 31 (24), 2024. doi: 10.1007/s11356-024-33479-4
  8. Modelling the Optimal Electricity Mix for Togo by 2050 Using OSeMOSYS

    Esso-Wazam Honoré Tchandao, Akim Adekunlé Salami, Koffi Mawugno Kodjo, Amy Nabiliou, Seydou Ouedraogo. International Journal of Renewable Energy Development, 12 (2), 2023. doi: 10.14710/ijred.2023.50104
  9. A Symmetry and Asymmetry Investigation of the Nexus Between Environmental Sustainability, Renewable Energy, Energy Innovation, and Trade: Evidence From Environmental Kuznets Curve Hypothesis in Selected MENA Countries

    Anselme Andriamahery, Md. Qamruzzaman. Frontiers in Energy Research, 9 , 2022. doi: 10.3389/fenrg.2021.778202
  10. International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?

    Chen Wang, Khalid Eltayeb Elfaki, Xin Zhao, Yuping Shang, Zeeshan Khan. Sustainable Development, 30 (6), 2022. doi: 10.1002/sd.2320
  11. The Italian Journey: Carbon dioxide emissions, the role of tourism and other economic and climate drivers

    Bernardina Algieri, Oliver Füg, Rosetta Lombardo. Journal of Cleaner Production, 375 , 2022. doi: 10.1016/j.jclepro.2022.134144
  12. Supply and Demand Characteristics of Palm Kernel Shell as a Renewable Energy Source for Industries

    Handaya Handaya, Herry Susanto, Dikky Indrawan, Marimin Marimin. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.41971
  13. Towards environmental sustainability path in Africa: The critical role of ICT, renewable energy sources, agriculturalization, industrialization and institutional quality

    Charles Shaaba Saba, Charles Raoul Tchuinkam Djemo, Joel Hinaunye Eita, Nicholas Ngepah. Energy Reports, 10 , 2023. doi: 10.1016/j.egyr.2023.10.039
  14. Impacts of high-technology product exports on climate change mitigation in Belt and Road countries: the mediating role of renewable energy source and human capital accumulation

    Miao Han, Yan Zhou, Taryn De Mendonca. Environment, Development and Sustainability, 26 (1), 2022. doi: 10.1007/s10668-022-02792-8
  15. Nexus between Energy Consumption, Foreign Direct Investment, Oil Prices, Economic Growth, and Carbon Emissions in Italy: Fresh Evidence from Autoregressive Distributed Lag and Wavelet Coherence Approach

    Aamir Javed, Agnese Rapposelli, Mohsin Shah, Asif Javed. Energies, 16 (16), 2023. doi: 10.3390/en16165885
  16. A VECM Analysis on the Impact of Agricultural Exports, Financial Openness and Trade Openness on India's Ecological Footprint

    Teesha Agarwal, Sreelakshmi P.. International Journal of Innovative Science and Research Technology (IJISRT), 2024. doi: 10.38124/ijisrt/IJISRT24MAR1081
  17. Key Aspects of Palm Kernel Shell Supply Chain for Industrial Renewable Energy Applications

    Handaya Handaya, Herry Susanto, Dikky Indrawan, Marimin Marimin. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.41971

Last update: 2024-07-21 19:52:44

No citation recorded.