skip to main content

Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification

1National Centre for Hydropower Research and Development, University of Ilorin, Ilorin, Nigeria

2Advanced Power and Green Energy Research Group, Department of Electrical and Electronics Engineering, University of Ilorin, Ilorin, Nigeria

3Department of Telecommunication Engineering, Federal University of Technology Minna, Nigeria

4 Department of Water Resources and Environmental Engineering, University of Ilorin, Ilorin, Nigeria

View all affiliations
Received: 1 Jul 2020; Revised: 17 Jan 2021; Accepted: 18 Mar 2021; Available online: 20 Apr 2021; Published: 1 Nov 2021.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

There is a need to develop an optimization tool that can be applied in the feasibility study of a hybrid renewable energy system to find the optimal capacity of different renewable energy resources and support the decision makers in their performance investigation. A multi-objective function which minimizes the Levelized Cost of Energy (LCOE) and Loss of Load Probability Index (LLPI) but maximizes the novel Energy Match Ratio (EMR) was formulated. Simulation-based optimization method combined with ε-constraint technique was developed to solve the multi-objective optimization problem. In the study, ten-year hourly electrical load demand, using the end-use model, is estimated for the communities. The performance of the developed algorithm was evaluated and validated using Hybrid Optimization Model for Electric Renewables (HOMER®) optimization software. The developed algorithm minimized the LCOE by 6.27% and LLPI by 167% when compared with the values of LCOE ($0.444/kWh) and LLPI (0.000880) obtained from the HOMER® optimization tool. Also, the LCOE with the proposed approach was calculated at $0.417/kWh, which is lower than the $0.444/kWh obtained from HOMER®. From environmental perspective, it is found that while 141,370.66 kg of CO2 is saved in the base year, 183,206.51 kg of CO2 is saved in the ninth year.The study concluded that the approach is computationally efficient and performed better than HOMER® for this particular problem.The proposed approach could be adopted for carrying out feasibility studies and design of HRES for Off-Grid electrification, especially in the rural areas where access to the grid electricity is limited

Fulltext View|Download
Keywords: Renewable energy technologies; optimization; energy match ratio; loss-of-load probability; rural electrification; off-grid;
Funding: National Centre for Hydropower Research and Development, University of Ilorin

Article Metrics:

  1. Abdelkader, A., Rabeh, A., Ali, D.M., & Mohammed, J. (2018). Multi-objective genetic algorithm based sizing optimization of a stand-alone wind/PV power supply system with enhanced battery/supercapacitor hybrid energy. Energy, 163 (15) 351-363;
  2. Abdul Razak, N. A. b., Murtadha, M., b. O., & Muslim, I. (2010). Optimal sizing and operation strategy of hybrid renewable energy system using homer. In Power Engineering and Optimization Conference (PEOCO), 23-24 June, Shah Alam, Malaysia; DOI: 10.1109/PEOCO.2010.5559240
  3. Ahmadi, M. H., Ghazvini, M., Sadeghzadeh, M., Nazari, M. A., Kumar, R., Naeimi, A. (2018). Solar power technology for electricity generation: A critical review. Electrochemical sciences advances, wiley online 6(5), 340-361
  4. Akuru, U. B., Onukwube, I. E., Okoro, O. I., & Obe, E. S. (2017). Towards 100% renewable energy in Nigeria. Renewable and Sustainable Energy Reviews 71, 943–953;
  5. Amer, M., Namaane, A., & M'sirdi, N. K. (2013). Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Energy Procedia, 318-327;
  6. Ardakani, F. J., Riahy, G., & Abedi, M. (2010). Design of an optimum hybrid renewable energy system considering reliability indices. In 18th IEEE Iranian Conference on Electrical Engineering (ICEE) May, 842–847; DOI: 10.1109/IRANIANCEE.2010.5506958
  7. Ariyo, B.O., Akorede, M.F., Omeiza, I.O., Amuda, S.A., & Oladeji, S.A. (2018). Optimization analysis of a stand-alone hybrid energy system for the senate building, university of Ilorin, Nigeria. Journal of Building Engineering 1(19), 285-294;
  8. Askarzadeh, A., & dos Santos, C. L. (2015). A novel framework for optimization of a grid independent hybrid renewable energy system: A case study of Iran. Solar Energy, 112, 383–396;
  9. Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Azmi, A., & Ramli, M. A.M. (2019). Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renewable Energy 138, 775-792;
  10. Azoumah, Y., Yamegueu, D., Ginies, P., Coulibaly, Y., & Girard P. (2011). Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The "flexy-energy" concept. Energy Policy 39, 131–141;
  11. Balat, M., & Balat, H. (2010). Progress in biodiesel processing. Applied Energy 87, 1815–1835; DOI: 10.1016/j.apenergy.2010.01.012
  12. Bashir, M., & Sadeh, J. (2011). Optimal sizing of hybrid wind/photovoltaic/battery considering the uncertainty of wind and photovoltaic power using Monte Carlo. In 11th IEEE International Conference on Environment and Electrical Engineering (EEEIC) May, 1081–1086; DOI: 10.1109/EEEIC.2012.6221541
  13. Bashir, M., & Sadeh, J. (2012). Size optimization of new hybrid stand-alone renewable energy system considering a reliability index. In 11th IEEE International Conference on Environment and Electrical Engineering (EEEIC) May, 989–994; DOI: 10.1109/EEEIC.2012.6221521
  14. Boonbumroong, U., Pratinthong, N., Thepa, S., Jivacate, C., & Pridasawas, W. (2011). Particle swarm optimization for AC-coupling stand-alone hybrid power systems. Solar Energy, 85(3), 560–569;
  15. Borhanazad, H., Saad, M., & Velappa, G.G. (2014). Optimization of Micro-Grid System using MOPSO. Renewable Energy 71, 295-306;
  16. Bourennani, F., Rahnamayan, S., & Naterer, G. F. (2015). Optimal design methods for hybrid renewable energy systems. International Journal of Green Energy, 12(2), 148-159;
  17. Cho, J., & Kleit, A.N. (2015). Energy storage systems in energy and ancillary markets: a backwards induction approach. Applied Energy, 147, 176–183;
  18. Coello, C.C., Lamont, G.B., & Van-Veldhuizen, D.A. (2007). Evolutionary algorithms for solving multi-objective problems. 2nd ed. New York: Springer;
  19. Dalton, G.J., Lockington, D.A. & Baldock, T.E. (2008). Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renewable Energy, 33(7), 1475-1490;
  20. Das, M., Singh, M. A. K., & Biswas, A. (2019). Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches – Case of a radio transmitter station in India. Energy Conversion and Management 185, 339–352;
  21. Das, R., Wang, Y., Putrus, G., Kotter, R., Marzband, M., Herteleer, B., Warmerdam, J. (2020). Multi-objective techno-economic-environmental optimization of electric vehicle for energy services. Applied Energy 257, 113965.
  22. Demiroren, A., & Yilmaz, U. (2010). Analysis of change in electric energy cost with using renewable energy sources in Gokceada, Turkey: As island example. Renewable and Sustainable Energy Reviews, 14(1), 323-33;
  23. Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. MHS’95. In proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39–43. Available on line at:
  24. Fodhil, F., Hamidat, A., & Nadjemi, O. (2019). Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria. Energy 169, 613-624;
  25. Forough, A. B., & Roshandel, R. (2017). Multi objective receding horizon optimization for optimal scheduling of hybrid renewable energy system. Energy and Buildings 150, 583–597;
  26. Gao, Y., Du, W., & Yan, G. (2015). Selectively-informed particle swarm optimization. Scientific reports 5:
  27. Gholinejad, R., Loni, A., Adabi J., Marzband, M. (2020). A hierarchical energy management system for multiple home energy hubs in neighborhood grids Hamid. Journal of Building Engineering 28, 101028. DOI: 10.1016/j.jobe.2019.101028
  28. Hadidian-Moghaddam, M. J., Arabi-Nowdeh, S., & Bigdeli, M. (2016). Optimal sizing of a stand-alone hybrid photovoltaic/wind system using new grey wolf optimizer considering reliability. Journal of Renewable and Sustainable Energy 8, 035903. Available on line at:
  29. Hakimi, S. M., & Moghaddas-Tafreshi, S. M. (2009). Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renewable energy 34(7), 1855–1862;
  30. Himri, Y., Stambouli, A.B., Draoui, B. & Himri, S. (2008). Techno-economical study of hybrid power system for a remote village in Algeria, Energy, 33(7), 1128-36;
  31. Huang, Z., Xie, Z., Zhang, C., Chan, S. H., Milewski, J., Xiea, Y. Yang, Y., & Hu, X. (2019). Modeling and multi-objective optimization of a stand-alone PV-hydrogen-retired EV battery hybrid energy system. Energy Conversion and Management, 181, 80–92;
  32. Jadidbonab, M., Mohammadi-Ivatloo, B., Marzband, M., Siano, P. (2020). Short-term Self-Scheduling of Virtual Energy Hub Plant within Thermal Energy Market. IEEE Transactions on Industrial Electronics, 1-13. DOI: 10.1109/TIE.2020.2978707
  33. Kaabeche, A. & Bakelli, Y. (2019). Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Conversion and Management, 193, 2019, 162-175;
  34. Kamal, B. (2012). Carbon Trading -It Pays to have Green Grid. Paper presented at the International Training Programme on “Rural Electrification with Small Hydropower” for participants from African countries Under India ‐ Africa Forum Summit ‐ II, at Alternate Hydro Energy Centre Indian Institute of Technology, Roorkee, India
  35. Kamel, S., & Dahl, C. (2005). The economics of hybrid power systems for sustainable desert agriculture in Egypt. Energy, 30 (8), 1271–81;
  36. Kamjoo, A., Maheri, A., Dizqah, A., & Putrus, G. (2016). Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. International Journal of Electrical Power Energy Systems, 74, 187-194; DOI: 10.1016/j.ijepes.2015.07.007
  37. Katsigiannis, Y.A., Georgilakis, P.S., & Karapidakis, E.S. (2010). Multi objective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewable. IET Renewable Power Generation 4(5), 404–419; DOI: 10.1049/iet-rpg.2009.0076
  38. Kaveh, K. D., Amir-Reza, A., & Madjid, T. (2013). A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems. Reliability Engineering System Safety, 111, 58-75;
  39. Kaviani, A. K., Riahy, G. H., & Kouhsari, S. M. (2009). Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages. Renewable Energy, 34(11), 2380– 2390;
  40. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization-Neural Networks. Proceedings of IEEE International Conference, 4, pp. 1942–1948. Available on line at: ICNN.1995.488968
  41. Khan, M. J., & Igba, M. T. (2005). Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland. Renewable Energy 30, 835–854;
  42. Kusakana, K., Munda, J. L., & Jimoh, A. A. (2009). Feasibility study of a hybrid PV-micro hydro system for rural electrification. IEEE AFRICON 2009, 23 - 25 September, Nairobi, Kenya; DOI: 10.1109/AFRCON.2009.5308185
  43. Lan, H., Wen, S., Hong, Y., Yu, D.C. & Zhang, L. (2015). Optimal sizing of hybrid PV/diesel/battery in ship power system. Applied Energy 158, 26–34;
  44. Lee, T. Y., & Chen, C. L. (2009). Wind-photovoltaic capacity coordination for a time-of-use rate industrial user. IET Renewable Power Generation, 3(2),152–167; DOI: 10.1049/iet-rpg:20070068
  45. Limmeechokchai, B., & Chawana, S. (2007). Sustainable energy development strategies in the rural Thailand: The case of the improved cooking stoves and the small biogas digester. Renewable and Sustainable Energy Reviews, 11(5), 818-837;
  46. Mahmoudi, S. M., Maleki, A., Ochbelagh, D. R. (2021). Optimization of a hybrid energy system with/without considering back-up system by a new technique based on fuzzy logic controller. Energy Conversion and Management 229, 113723
  47. Maleki, A., & Askarzadeh, A. (2014). Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments, 7, 147–53;
  48. Marzband, M., Azarinejadian, F., Savaghebi, M., Pouresmaeil, E., Guerrero, J. M., Lightbody G. (2018). Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renewable Energy 126, 95-106.
  49. Masoud, S., & Tarek, Y. E. (2014). A dynamic MOPSO algorithm for multiobjective optimal design of hybrid renewable energy systems. International Journal of Energy Research, 38(15), 1949–1963;
  50. Mirzaei, M. A., Sadeghi-Yazdankhah, A., Mohammadi-Ivatloo, B., Marzband, M., Shafie-khah, M., Catalão, J. P. S. (2019). Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products, Energy 189, 116195.
  51. Mohamed, M. A, Eltamaly, A. M., & Alolah, A. I. (2016). PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems. PLoS ONE 11(8):e0159702;
  52. Nandi, S., & Ghosh, H.R. (2010). Prospect of wind-PV-battery hybrid system as an alternative to grid extension in Bangladesh. Energy, 35(7), 3040-3047;
  53. Nazari-Heris, M., Mirzaei, M. A., Mohammadi-Ivatloo, B., Marzband, M., Asadi, S. (2020). Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. Journal of Cleaner Production 244, 118769, 2020.
  54. Nfah, E. M., Ngundam, J. M., Vandenbergh, M., & Schmid, J. (2008). Simulation of off-grid generation options for remote villages in Cameroon. Renewable Energy, 33 (5), 1064-72;
  55. Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V.P.C. (2013). A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Applied Energy, 107, 412-425;
  56. Ren, H., Lu, Y., Wu, Q., Yan, X., & Zhou, A. (2018). Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm. Frontiers Energy, 12(4), 518-528;
  57. Roberts, J. J., Marotta Cassula, A., Silveira, J. L., da Costa Bortoni, E., & Mendiburu, A. Z. (2018). Robust multi-objective optimization of a renewable based hybrid power system. Applied Energy, 223, 52-68;
  58. Sadeghzadeh, M., Ahmadi, M. H., Kahani, M., Sakhaeinia, H., Chaji, H., Chen, L. (2019). Smart modeling by using artificial intelligent techniques on thermal performance of flat‐plate solar collector using nanofluid. Energy Science and Engineering, 7(5), 1649-1658
  59. Sambo, A. S. (2009). The Place of Renewable Energy in the Nigerian Energy Sector. Paper presented at the World Future Council Workshop on Renewable Energy Policies, 10thOctober, Addis Ababa, Ethiopia
  60. Setiawan, A., Zhao, Y., & Nayar, C. M. (2009). Design, economic analysis and environmental considerations of mini-grid hybrid power system with reverse osmosis desalination plant for remote areas. Renewable Energy, 34(2), 374-83;
  61. Shaahid, S.M., & Elhadidy, M.A. (2007). Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments. Renewable and Sustainable Energy Reviews, 11(8), 1794-1810;
  62. Sharafi, M., & ELMekkawy, T. Y. (2014). Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renewable Energy 68, 67-79
  63. Singh, R., Bansal, R. C. (2019). Optimization of an Autonomous Hybrid Renewable Energy System Using Reformed Electric System Cascade Analysis. IEE Transactions on Industrial Informatics, 15(1), pp. 399-409.
  64. Starke, A. R., Cardemil, J. M., Escobar, R., & Colle, S. (2018). Multi-objective optimization of hybrid CSP+PV system using genetic algorithm. Energy, 147(C), 490-503;
  65. Suhane, P., Rangnekar, S., Mittal, A., & Khare, A. (2016). Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimization. The Institution of Engineering and Technology, 10(7), 964-972; DOI: 10.1049/iet-rpg.2015.0394
  66. Tregambi, C., Bareschino, P., Mancusi, E., Pepe, F., Montagnaro, F., Solimene, R., Salatino, P. (2021). Modelling of a concentrated solar power – photovoltaics hybrid plant for carbon dioxide capture and utilization via calcium looping and methanation. Energy Conversion and Management, 230, 113792
  67. Tsai, T-C., Beza, T. M., Molla, E. M., Kuo, C-C. (2020). Analysis and Sizing of Mini-Grid Hybrid Renewable Energy System for Islands. IEEE, 8, 70013 – 70029.
  68. Turkey, B.E. & Telli, A.Y. (2011). Economics analysis of standalone and grid-connected hybrid energy systems. Renewable Energy, 36(7), 1931-1943;
  69. Wang, L., & Singh, C. (2009). Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Transactions on Energy Conversion, 24(1), 163–172; doi: 10.1109/TEC.2008.2005280
  70. Weis, T. M., & Ilinca, A. (2008). The utility of energy storage to improve the economics of wind-diesel power plants in Canada. Renewable Energy, 33(7), 1544-1557;
  71. Wu, T., Bu, S., Wei, X., Wang, G., Zhou, B. (2021). Multitasking multi-objective operation optimization of integrated energy system considering biogas-solar-wind renewables. Energy Conversion and Management, 229, 2021, 113736.
  72. Zahraee, S. M., Assadi, M. K., & Saidur, R. (2016). Application of artificial intelligence methods for hybrid energy system optimization. Renewable and Sustainable Energy Reviews, 66, 617-630;
  73. Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: a comparative life cycle cost analysis. Renewable and Sustain Energy Reviews 42, pp. 569–596. Available on line at:
  74. Zhao, P., Wang, J., & Dai., Y. (2015). Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level. Renewable Energy 75, pp. 541–549. Available on line at:
  75. Zhu, J. (2015) Optimization of power system operation. Vol. 47. John Wiley & Sons, 2015.

Last update:

No citation recorded.

Last update:

No citation recorded.