skip to main content

Enhancing Ionic Conductivity of Carboxymethyl Cellulose-Lithium Perchlorate with Crosslinked Citric Acid as Solid Polymer Electrolytes for Lithium Polymer Batteries

1Department of Physics, IPB University, Indonesia

2Department of Physics, Faculty of Science, Universitas Mandiri, Indonesia

3Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Indonesia

Received: 15 Jul 2021; Revised: 17 Nov 2021; Accepted: 20 Jun 2022; Available online: 12 Jul 2022; Published: 1 Nov 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Lithium batteries development are triggered so many efforts in producing electronic devices due to its excellent performance as energy storage systems. One of the appealing points solid polymer electrolytes for developing solid-state lithium batteries. In this study, Solid polymer electrolytes with crosslinked treatment (SPE-C) were prepared from carboxymethyl cellulose-lithium perchlorate (CMC-LiClO4) and citric acid (CA) as a crosslinker via solution casting method. All SPE-C membranes were assembled into lithium battery coin cells. Degree of crosslinked and degradation were measured to observe crosslink formation in SPE-C membranes and confirmed by fourier transform infrared (FTIR), whereas SPE-C in coin cells were characterized by electrochemical impedance spectroscopy (EIS) and linear sweep voltammograms (LSV). The results showed that crosslinked process is successfully obtained with C=O from ester linkage of CA vibration within COO- of CMC for the crosslinking bond formation. The crosslink effect also contributed on enhancing ionic conductivities of SPE-C in coin cells from EIS results. The highest ionic conductivity was obtained in SPE-C2 (1.24×10-7 S/cm) and electrochemically stable in 2.15 V based on LSV measurement. SPE-C2 has good dielectric behavior than the others due to the high ions mobilities for migration process from ion clusters formation, thus it would be useful for further study in obtaining the powerful solid-state lithium polymer batteries.

Fulltext View|Download
Keywords: solid polymer electrolytes; carboxymethyl cellulose; crosslink; ionic conductivity; lithium polymer batteries

Article Metrics:

  1. Abarna, S., & Hirankumar, G. (2014). Study on new lithium ion conducting electrolyte based on polyethylene glycol – p-tertoctyl phenyl ether and lithium perchlorate. International Journal of ChemTech Research, 6(13), 5161–5167
  2. Abidin, S. Z. Z., Hassan, O. H., Ali, A. M. M., & Yahya, M. Z. A. (2012). Electrochemical studies on cellulose acetate-LiBOB polymer gel electrolytes. International Journal of Electrochemical Science, 8, 7320–7326
  3. Ali, B., & Mohammed, A. B. R. (2020). Ionic conductivity of chitosan-lithium electrolyte in biodegradable battery cell. Indonesian Journal of Chemistry, 20(3), 655–660; doi: 10.22146/ijc.45283
  4. Arya, A., Sadiq, M., & Sharma, A. L. (2019). Salt concentration and temperature dependent dielectric properties of blend solid polymer electrolyte complexed with NaPF6. Materials Today: Proceedings, 12(3), 554–564; doi: 10.1016/j.matpr.2019.03.098
  5. Arya, A., & Sharma, A. L. (2018a). Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. Journal of Materials Science: Materials in Electronics, 29(20), 17903–17920; doi: 10.1007/s10854-018-9905-3
  6. Arya, A., & Sharma, A. L. (2018b). Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. Journal of Physics Condensed Matter, 30(16), 165402; doi: 10.1088/1361-648X/aab466
  7. Aziz, S. B. (2013). Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iranian Polymer Journal, 22(12), 877–883; doi: 10.1007/s13726-013-0186-7
  8. Aziz, S. B., Abdullah, O. G., Saeed, S. R., & Ahmed, H. M. (2018). Electrical and dielectric properties of copper ion conducting solid polymer electrolytes based on chitosan: CBH model for ion transport mechanism. International Journal of Electrochemical Science, 13(4), 3812–3826; doi: 10.20964/2018.04.10
  9. Aziz, S. B., & Abidin, Z. H. Z. (2013). Electrical conduction mechanism in solid polymer electrolytes: New concepts to arrhenius equation. Journal of Soft Matter, 2013, 323868; doi: 10.1155/2013/323868
  10. Aziz, S. B., Faraj, M. G., & Abdullah, O. G. (2018). Impedance spectroscopy as a novel approach to probe the phase transition and microstructures existing in CS:PEO based blend electrolytes. Scientific Reports, 8(14308), 1–14; doi: 10.1038/s41598-018-32662-1
  11. Aziz, S. B., Hamsan, M. H., Abdullah, R. M., & Kadir, M. F. Z. (2019). A promising polymer blend electrolytes based on chitosan: Methyl cellulose for EDLC application with high specific capacitance and energy density. Molecules, 24(13), 2503; doi: 10.3390/molecules24132503
  12. Aziz, S. B., Karim, W. O., & Ghareeb, H. O. (2020). The deficiency of chitosan: AgNO3 polymer electrolyte incorporated with titanium dioxide filler for device fabrication and membrane separation technology. Journal of Materials Research and Technology, 9(3), 4692–4705; doi: 10.1016/j.jmrt.2020.02.097
  13. Aziz, S. B., & Mamand, S. M. (2018). The Study of dielectric properties and conductivity relaxation of ion conducting chitosan: NaTf based solid electrolyte. International Journal of Electrochemical Science, 13(11), 10274–10288; doi: 10.20964/2018.11.05
  14. Aziz, S. B., Marif, R. B., Brza, M. A., Hamsan, M. H., & Kadir, M. F. Z. (2019). Employing of Trukhan model to estimate ion transport parameters in PVA based solid polymer electrolyte. Polymers, 11(10), 1694; doi: 10.3390/polym11101694
  15. Badry, R., Ezzat, H. A., El-Khodary, S., Morsy, M., Elhaes, H., Nada, N., & Ibrahim, M. (2021). Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. Journal of Molecular Structure, 1224, 129013; doi: 10.1016/j.molstruc.2020.129013
  16. Baharun, N. N. S., Mingsukang, M. A., Buraidah, M. H., Woo, H. J., & Arof, A. K. (2018). Electrical properties of plasticized sodium-carboxymethylcellulose (NaCMC) based polysulfide solid polymer electrolyte. International Conference on Transparent Optical Networks (ICTON), 2018-July, 1–4; doi: 10.1109/ICTON.2018.8473830
  17. Ben youcef, H., Garcia-Calvo, O., Lago, N., Devaraj, S., & Armand, M. (2016). Cross-linked solid polymer electrolyte for all-solid-state rechargeable lithium batteries. Electrochimica Acta, 220, 587–594; doi: 10.1016/j.electacta.2016.10.122
  18. Capanema, N. S. V., Mansur, A. A. P., de Jesus, A. C., Carvalho, S. M., de Oliveira, L. C., & Mansur, H. S. (2018). Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules, 106, 1218–1234; doi: 10.1016/j.ijbiomac.2017.08.124
  19. Chai, M. N., & Isa, M. I. N. (2011). Carboxyl methylcellulose solid polymer electrolytes : Ionic conductivity and dielectric study. Journal of Current Engineering Research, 1(2), 1–5
  20. Chaudoy, V., Ghamouss, F., Luais, E., & Tran-Van, F. (2016). Cross-linked polymer electrolytes for li-based batteries: From solid to gel electrolytes. Industrial and Engineering Chemistry Research, 55(37), 9925–9933; doi: 10.1021/acs.iecr.6b02287
  21. Chen, X., & Vereecken, P. M. (2019). Solid and solid-like composite electrolyte for lithium ion batteries: Engineering the ion conductivity at interfaces. Advanced Materials Interfaces, 6(1), 1800899; doi: 10.1002/admi.201800899
  22. Dannoun, E. M. A., Aziz, S. B., Brza, M. A., Nofal, M. M., Asnawi, A. S. F. M., Yusof, Y. M., Al-Zangana, S., Hamsan, M. H., Kadir, M. F. Z., & Woo, H. J. (2020). The study of plasticized solid polymer blend electrolytes based on natural polymers and their application for energy storage EDLC devices. Polymers, 12(11), 2531; doi: 10.3390/polym12112531
  23. Elmore, C. T., Seidler, M. E., Ford, H. O., Merrill, L. C., Upadhyay, S. P., Schneider, W. F., & Schaefer, J. L. (2018). Ion transport in solvent-free, crosslinked, single-ion conducting polymer electrolytes for post-lithium ion batteries. Batteries, 4(2), 1–17; doi: 10.3390/batteries4020028
  24. Fu, K., Gong, Y., Dai, J., Gong, A., Han, X., Yao, Y., Wang, C., Wang, Y., Chen, Y., Yan, C., Li, Y., Wachsman, E. D., & Hu, L. (2016). Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences of the United States of America, 113(26), 7094–7099; doi: 10.1073/pnas.1600422113
  25. Ghani, N. A. A., Othaman, R., Ahmad, A., Anuar, F. H., & Hassan, N. H. (2019). Impact of purification on iota carrageenan as solid polymer electrolyte. Arabian Journal of Chemistry, 12(3), 370–376; doi: 10.1016/j.arabjc.2018.06.008
  26. Ghorpade, V. S., Yadav, A. V., Dias, R. J., Mali, K. K., Pargaonkar, S. S., Shinde, P. V., & Dhane, N. S. (2018). Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs. International Journal of Biological Macromolecules, 118, 783–791; doi: 10.1016/j.ijbiomac.2018.06.142
  27. Gupta, S., & Varshney, P. K. (2019). Effect of plasticizer on the conductivity of carboxymethyl cellulose-based solid polymer electrolyte. Polymer Bulletin, 76(12), 6169–6178; doi: 10.1007/s00289-019-02714-1
  28. Jiang, J., Pan, H., Lin, W., Tu, W., & Zhang, H. (2019). UV-induced semi-interpenetrating polymer electrolyte membrane for elevated-temperature all-solid-state lithium-ion batteries. Materials Chemistry and Physics, 236, 121781; doi: 10.1016/j.matchemphys.2019.121781
  29. Kanafi, N. M., Rahman, N. A., & Rosdi, N. H. (2019). Citric acid cross-linking of highly porous carboxymethyl cellulose/poly(ethylene oxide) composite hydrogel films for controlled release applications. Materials Today: Proceedings, 7, 721–731; doi: 10.1016/j.matpr.2018.12.067
  30. Koops, C. G. (1951). On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical Review, 83(1), 121–124; doi: 10.1103/PhysRev.83.121
  31. Kumar, M., & Srivastava, N. (2015). Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system. Ionics, 21(5), 1301–1310; doi: 10.1007/s11581-014-1294-x
  32. Lehmann, M. L., Yang, G., Nanda, J., & Saito, T. (2020). Well-designed crosslinked polymer electrolyte enables high ionic conductivity and enhanced salt solvation. Journal of The Electrochemical Society, 167(7), 070539; doi: 10.1149/1945-7111/ab7c6e
  33. Ma, X., Yu, J., He, K., & Wang, N. (2007). The effects of different plasticizers on the properties of thermoplastic starch as solid polymer electrolytes. Macromolecular Materials and Engineering, 292(4), 503–510; doi: 10.1002/mame.200600445
  34. Mali, K. K., Dhawale, S. C., Dias, R. J., Dhane, N. S., & Ghorpade, V. S. (2018). Citric acid crosslinked carboxymethyl cellulose-based composite hydrogel films for drug delivery. Indian Journal of Pharmaceutical Sciences, 80(4), 657–667
  35. Mazuki, N. F., Abdul Majeed, A. P. P., Nagao, Y., & Samsudin, A. S. (2020). Studies on ionics conduction properties of modification CMC-PVA based polymer blend electrolytes via impedance approach. Polymer Testing, 81, 106234; doi: 10.1016/j.polymertesting.2019.106234
  36. Mazuki, N. F., Fuzlin, A. F., Saadiah, M. A., & Samsudin, A. S. (2019). An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics, 25(6), 2657–2667; doi: 10.1007/s11581-018-2734-9
  37. Meabe, L., Huynh, T. V., Mantione, D., Porcarelli, L., Li, C., O’Dell, L. A., Sardon, H., Armand, M., Forsyth, M., Mecerreyes, D. (2019). UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium batteries. Electrochimica Acta, 302, 414–421; doi: 10.1016/j.electacta.2019.02.058
  38. Megha, R., Ravikiran, Y. T., Kotresh, S., Vijaya Kumari, S. C., Raj Prakash, H. G., & Thomas, S. (2018). Carboxymethyl cellulose: An efficient material in enhancing alternating current conductivity of HCl doped polyaniline. Cellulose, 25(2), 1147–1158; doi: 10.1007/s10570-017-1610-5
  39. Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical interpretations of nyquist plots for EDLC electrodes and devices. Journal of Physical Chemistry C, 122(1), 194–206; doi: 10.1021/acs.jpcc.7b10582
  40. Nan, N. F. C., Zainuddin, N., & Ahmad, M. (2019). Preparation and swelling study of CMC hydrogel as potential superabsorbent. Pertanika Journal of Science and Technology, 27(1), 489–498
  41. Ndruru, S. T. C. L., Wahyuningrum, D., Bundjali, B., & Made Arcana, I. (2019). Green synthesis of [EMIm]Ac ionic liquid for plasticizing mc-based biopolymer electrolyte membranes. Bulletin of Chemical Reaction Engineering & Catalysis, 14(2), 345–357; doi: 10.9767/bcrec.14.2.3074.345-357
  42. Ng, B. C., Wong, H. Y., Chew, K. W., & Osman, Z. (2011). Development and characterization of Poly-ε-caprolactone-based polymer electrolyte for lithium rechargeable battery. International Journal of Electrochemical Science, 6(9), 4355–4364
  43. Nyuk, C. M., & Mohd Isa, M. I. N. (2017). Solid biopolymer electrolytes based on carboxymethyl cellulose for use in coin cell proton batteries. Journal of Sustainability Science and Management, 2017(2), 42–48
  44. Perumal, P., Christopher Selvin, P., Selvasekarapandian, S., & Abhilash, K. P. (2019). Bio-host pectin complexed with dilithium borate based solid electrolytes for polymer batteries. Materials Research Express, 6(11), 115513; doi: 10.1088/2053-1591/ab4724
  45. Putro, P. A., Sulaeman, A. S., & Erizal. (2019). Synthesis and characterization of swelling properties superabsorbent hydrogel carboxymethylcellulose-g-poly (acrylic acid)/natrium alginate cross-linked by gamma-ray irradiation technique. Journal of Physics: Conference Series, 1171, 012011; doi: 10.1088/1742-6596/1171/1/012011
  46. Putro, P. A., Sulaeman, A. S., & Maddu, A. (2021). The role of C-dots/(MnO2)x(x = 0, 2, 4, mM) on enhancing the ion transport in poly (ethylene oxide) based solid polymer electrolytes: The Optical and electrical characteristics. Journal of Physics: Conference Series, 1805, 012020; doi: 10.1088/1742-6596/1805/1/012020
  47. Putro, Permono Adi, Yudasari, N., Irdawati, Y., Sulaeman, A. S., & Maddu, A. (2021). Reducing the electrical conductivity of ZnO/Ag nanofiller for solid polymer electrolytes prepared by laser ablation in polylactic acid solution. Jurnal Fisika Dan Aplikasinya, 17(2), 41; doi: 10.12962/j24604682.v17i2.8135
  48. Ravi, M., Song, S., Wang, J., Nadimicherla, R., & Zhang, Z. (2016). Preparation and characterization of biodegradable poly(ε-caprolactone)-based gel polymer electrolyte films. Ionics, 22(5), 661–670; doi: 10.1007/s11581-015-1586-9
  49. Ren, W., Huang, Y., Xu, X., Liu, B., Li, S., Luo, C., Li, X., Wang, M., Cao, H. (2020). Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery. Journal of Materials Science, 55(26), 12249–12263; doi: 10.1007/s10853-020-04888-w
  50. Saadiah, M. A., & Samsudin, A. S. (2018). Electrical study on carboxymethyl cellulose-polyvinyl alcohol based bio-polymer blend electrolytes. IOP Conference Series: Materials Science and Engineering, 342(1), 012045; doi: 10.1088/1757-899X/342/1/012045
  51. Salleh, N. S., Aziz, S. B., Aspanut, Z., & Kadir, M. F. Z. (2016). Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics, 22(11), 2157–2167; doi: 10.1007/s11581-016-1731-0
  52. Samsudin, A. S., Aziz, M. I. A., & Isa, M. I. N. (2012). natural polymer electrolyte system based on sago: Structural and transport behavior characteristics. International Journal of Polymer Analysis and Characterization, 17(8), 600–607; doi: 10.1080/1023666X.2013.723846
  53. Samsudin, A. S., Lai, H. M., & Isa, M. I. N. (2014). Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochimica Acta, 129, 1–13; doi: 10.1016/j.electacta.2014.02.074
  54. Samsudin, A. M., Wolf, S., Roschger, M., & Hacker, V. (2021). Poly(vinyl alcohol)-based anion exchange membranes for alkaline direct ethanol fuel cells. International Journal of Renewable Energy Development, 10(3), 435–443; doi: 10.14710/ijred.2021.33168
  55. Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430; doi: 10.1016/j.jpowsour.2009.11.048
  56. Shyly, P. M., Roy, S. D. D., Thiravetyan, P., Thanikaikarasan, S., Sebastian, P. J., Eapen, D., & Shajan, X. S. (2014). Investigations on the effect of chitin Nanofiber in PMMA Based solid polymer electrolyte systems. Journal of New Materials for Electrochemical Systems, 17(3), 147–152; doi: 10.14447/jnmes.v17i3.405
  57. Sim, L. H., Gan, S. N., Chan, C. H., & Yahya, R. (2010). ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 76(3–4), 287–292; doi: 10.1016/j.saa.2009.09.031
  58. Stavrinidou, E., Sessolo, M., Winther-Jensen, B., Sanaur, S., & Malliaras, G. G. (2014). A physical interpretation of impedance at conducting polymer/electrolyte junctions. AIP Advances, 4(1); doi: 10.1063/1.4863297
  59. Sulaeman, A. S., Maddu, A., Wahyudi, S. T., & Rifai, A. (2021). Salt concentration effect on electrical and dielectric properties of solid polymer electrolytes based carboxymethyl cellulose for lithium-ion batteries. Biointerface Research in Applied Chemistry, 12(5), 6114–6123; doi: 10.33263/BRIAC125.61146123
  60. Sun, B., Mindemark, J., Edström, K., & Brandell, D. (2014). Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics, 262, 738–742; doi: 10.1016/j.ssi.2013.08.014
  61. Sunandar, M., Yulianti, E., Deswita, D., & Sudaryanto, S. (2019). Study of solid polymer electrolyte based on biodegradable polymer polycaprolactone. Malaysian Journal of Fundamental and Applied Sciences, 15(3), 467–471; doi: 10.11113/mjfas.v15n3.1185
  62. Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359–367; doi: 10.1038/35104644
  63. Tripathi, N., Shukla, A., Thakur, A. K., & Marx, D. T. (2020). Dielectric modulus and conductivity scaling approach to the analysis of ion transport in solid polymer electrolytes. Polymer Engineering and Science, 60(2), 297–305; doi: 10.1002/pen.25283
  64. Verdier, N., Lepage, D., Zidani, R., Prébé, A., Aymé-Perrot, D., Pellerin, C., Dollé, M., & Rochefort, D. (2020). Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-ion battery. ACS Applied Energy Materials, 3(1), 1099–1110; doi: 10.1021/acsaem.9b02129
  65. Verma, M. L., & Sahu, H. D. (2017). Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics, 23(9), 2339–2350; doi: 10.1007/s11581-017-2063-4
  66. Wang, X., Zeng, W., Hong, L., Xu, W., Yang, H., Wang, F., Duan, H., Tang, M., & Jiang, H. (2018). Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 3(3), 227–235; doi: 10.1038/s41560-018-0104-5
  67. Wivanius, N., & Budianto, E. (2015). Sintesis dan karakterisasi hidrogel superabsorben kitosan Poli(N-Vinilkaprolaktam) (Pnvcl) dengan metode full IPN (Interpenetrating Polymer Network). Pharmaceutical Sciences and Research, 2(3), 152–168; doi: 10.7454/psr.v2i3.3483
  68. Yap, Y. L., You, A. H., Teo, L. L., & Hanapei, H. (2013). Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. International Journal of Electrochemical Science, 8(2), 2154–2163
  69. Yuan, X.-Z., Song, C., Wang, H., & Zhang, J. (2010). Electrochemical impedance spectroscopy in pem fuel cells fundamentals and applications. Springer-Verlag, London

Last update:

  1. Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries

    Mohamed Djihad Bouguern, Anil Kumar Madikere Raghunatha Reddy, Xia Li, Sixu Deng, Harriet Laryea, Karim Zaghib. Batteries, 10 (1), 2024. doi: 10.3390/batteries10010039
  2. Modification of Nias’ Cacao Pod Husk Cellulose through Carboxymethylation Stages by Using MAOS Method and Its Application as Li‐ion Batteries’ Biopolymer Electrolyte Membrane**

    Sun Theo Constan Lotebulo Ndruru, Sonny Widiarto, Edi Pramono, Deana Wahyuningrum, Bunbun Bundjali, I Made Arcana. ChemistrySelect, 7 (44), 2022. doi: 10.1002/slct.202202510
  3. Isolation, Modification, and Characterization of Local Indonesia's Sugarcane Bagasse Cellulose for Dye‐Adsorbent Application

    Sun Theo Constan Lotebulo Ndruru, Veronika Ariva Asta, Rifa Al Razi Hidayat, Rista Siti Mawarni, Anita Marlina, Evi Yulianti, Aniek Sri Handayani, Hikmat, Rabiyatul Adawiyah Siregar, Leny Heliawati, Aseel Abdulameer Kareem, Muh. Nur Khoiru Wihadi, Atika Trisna Hayati, Ridho Prasetyo. ChemistrySelect, 9 (2), 2024. doi: 10.1002/slct.202302812
  4. Preparation and characterization of polymer blend electrolyte membranes based on lithium acetate‐complexed carboxymethyl cellulose (CMC) and carboxymethyl chitosan (CMCh) blend

    Sun Theo Constan Lotebulo Ndruru, Anita Marlina, Bangun Satrio Nugroho, Edi Pramono, Qolby Sabrina, Evi Yulianti, I Made Arcana, Deana Wahyuningrum. Polymer Engineering & Science, 2023. doi: 10.1002/pen.26582
  5. The utilization of nias Indonesia’s cacao POD husk cellulose derivative as blend agent for MC/CMC blend-based membranes

    Sun Theo Constan Lotebulo Ndruru, Deana Wahyuningrum, Bunbun Bundjali, I. Made Arcana. XVII MEXICAN SYMPOSIUM ON MEDICAL PHYSICS, 2947 , 2023. doi: 10.1063/5.0172838
  6. Fabrication of solid polymer electrolyte based on carboxymethyl cellulose complexed with lithium acetate salt as Lithium‐ion battery separator

    Dhea Afrisa Darmawan, Evi Yulianti, Qolby Sabrina, Kensuke Ishida, Aditya Wibawa Sakti, Hiromi Nakai, Edi Pramono, Sun Theo Constan Lotebulo Ndruru. Polymer Composites, 45 (3), 2024. doi: 10.1002/pc.27902
  7. Utilization of the spent catalyst as a raw material for rechargeable battery production: The effect of leaching time, type, and concentration of organic acids

    Tabita Kristina Mora Ayu Panggabean, Ratna Frida Susanti, Widi Astuti, Himawan Tri Bayu Murti Petrus, Anastasia Prima Kristijarti, Kevin Cleary Wanta. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.51353
  8. Electrospinning of Bacterial Cellulose Modified with Acetyl Groups for Polymer Electrolyte Li-Ion Batteries

    Qolby Sabrina, Sudaryanto, Nurhalis Majid, Akihide Sugawara, Yu-I Hsu, Rike Yudianti, Hiroshi Uyama. Journal of Electronic Materials, 53 (4), 2024. doi: 10.1007/s11664-024-10958-5
  9. Reference Module in Earth Systems and Environmental Sciences

    T. Mohana Selvi, S. Brindha, P. Mathan Kumar, V Mareeswaran, B. Muthuraaman, S. Austin Suthanthiraraj. 2024. doi: 10.1016/B978-0-323-93940-9.00242-5

Last update: 2024-07-15 05:45:27

No citation recorded.