skip to main content

Laminar Flame Characteristics of 2,5-Dimethylfuran (DMF) Biofuel: A Comparative Review with Ethanol and Gasoline

1Faculty of Mechanical Engineering, Industrial University of Ho Chi Minh City (IUH), Ho Chi Minh City, Viet Nam

2Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

3Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

4 Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

View all affiliations
Received: 11 Oct 2021; Revised: 15 Nov 2021; Accepted: 20 Nov 2021; Available online: 27 Nov 2021; Published: 1 Feb 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Since the early years of the 21st century, the whole world has faced two very urgent problems: the depletion of fossil energy sources and climate change due to environmental pollution. Among the solutions sought, 2,5-Dimethylfuran (DMF) emerged as a promising solution. DMF is a 2nd generation biofuel capable of mass production from biomass. There have been many studies confirming that DMF is a potential alternative fuel for traditional fuels (gasoline and diesel) in internal combustion engines, contributing to solving the problem of energy security and environmental pollution. However, in order to apply DMF in practice, more comprehensive studies are needed. Not out of the above trend, this paper analyzes and discusses in detail the characteristics of DMF's combustible laminar flame and its instability under different initial conditions. The evaluation results show that the flame characteristics of DMF are similar to those of gasoline, although the burning rate of DMF is much higher than that of gasoline. This shows that DMF can become a potential alternative fuel in internal combustion engines.

Fulltext View|Download
Keywords: 2,5-dimethylfuran; initial parameters; laminar burning velocity; flame instability; mole fraction profiles; reaction schemes

Article Metrics:

  1. Ab Rasid, N.S., Shamjuddin, A., Rahman, A.Z.A., Amin, N.A.S., 2021. Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. J. Clean. Prod. 129038
  2. Abyaz, A., Afra, E., Saraeyan, A., 2020. Improving technical parameters of biofuel briquettes using cellulosic binders. Energy Sources, Part A Recover. Util. Environ. Eff. 1–12
  3. Aghaei, A., Shahhosseini, S., Sobati, M.A., 2020. Regeneration of different extractive solvents for the oxidative desulfurization process: An experimental investigation. Process Saf. Environ. Prot. 139, 191–200
  4. Al-Tawaha, A., Pham, M.T., Le, A.T., Dong, V.H., Le, V.V., 2018. Measurement and prediction of the density and viscosity of biodiesel blends. Int. J. Technol. 5, 1015–1026
  5. Alami, A.H., Tawalbeh, M., Alasad, S., Ali, M., Alshamsi, M., Aljaghoub, H., 2021. Cultivation of Nannochloropsis algae for simultaneous biomass applications and carbon dioxide capture. Energy Sources, Part A Recover. Util. Environ. Eff. 1–12
  6. Alexandrino, K., 2020. Comprehensive Review of the Impact of 2, 5-Dimethylfuran and 2-Methylfuran on Soot Emissions: Experiments in Diesel Engines and at Laboratory-Scale. Energy & Fuels
  7. An, H., Yang, W.M., Maghbouli, A., Chou, S.K., Chua, K.J., 2013. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling. Appl. Energy 102, 647–656
  8. Anh, L.T., Anh, H.T., 2019. Trilateral correlation of spray characteristics, combustion parameters, and deposit formation in the injector hole of a diesel engine running on preheated Jatropha oil and fossil diesel fuel. Biofuel Res. J. 6, 909–919. https://doi.org/10.18331/BRJ2019.6.1.2
  9. Arias-Fernández, I., Romero Gómez, M., Romero Gómez, J., López-González, L.M., 2020. Generation of H2 on board LNG vessels for consumption in the propulsion system. Polish Marit. Res. 27, 83–95
  10. Ashok, B., Nanthagopal, K., Chyuan, O.H., Le, P.T.K., Raje, N., Raj, A., Karthickeyan, V., Tamilvanan, A., 2020. Multi-functional fuel additive as a combustion catalyst for diesel and biodiesel in CI engine characteristics. Fuel 278, 118250
  11. Atabani, A.E., Tyagi, V.K., Fongaro, G., Treichel, H., Pugazhendhi, A., 2021. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products
  12. Atarod, P., Khlaife, E., Aghbashlo, M., Tabatabaei, M., Hoang, A.T., Mobli, H., Nadian, M.H., Hosseinzadeh-Bandbafha, H., Mohammadi, P., Shojaei, T.R., 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel‎ emulsion fuel. J. Hazard. Mater. 407, 124369
  13. Aykut, Ö.I., Sandro, N., 2021. 2,5-Dimethylfuran (DMF) as a promising biofuel for the spark ignition engine application: A comparative analysis and review. Fuel 285, 119140. https://doi.org/10.1016/j.fuel.2020.119140
  14. Badawy, T., Williamson, J., Xu, H., 2016. Laminar burning characteristics of ethyl propionate, ethyl butyrate, ethyl acetate, gasoline and ethanol fuels. Fuel 183, 627–640
  15. Balasubramaniam, D., Nguyen, H.P., Le, P.Q.H., Pham, V.V., Nguyen, X.P., Hoang, A.-T., 2021. Application of the Internet of Things in 3E (efficiency, economy, and environment) factor-based energy management as smart and sustainable strategy. Energy Sources, Part A Recover. Util. Environ. Eff. 1–23
  16. Balasubramanian, D., Konur, O., Nguyen, D.C., Tran, V.N., Bui, T.T., 2021. Characteristics of PM and soot emissions of internal combustion engines running on biomass-derived DMF biofuel: A review. Energy Sources, Part A Recover. Util. Environ. Eff
  17. Bamisile, O., Dagbasi, M., Huang, Q., Williams, N., Ruwa, T., Babatunde, A., Kemena, A.D., 2020. A biomass-integrated comprehensive energy system: thermodynamics assessment and performance comparison of sugarcane bagasse and rice husk as input source. Energy Sources, Part A Recover. Util. Environ. Eff. 1–18
  18. Benson, R.S., Whitehouse, N.D., 2013. Internal combustion engines: a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development. Elsevier
  19. Bhattacharya, A., Datta, A., 2019. Effects of blending 2, 5-dimethylfuran on the laminar burning velocity and ignition delay time of isooctane/air mixture. Combust. Theory Model. 23, 105–126
  20. Binder, J.B., Raines, R.T., 2009. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985
  21. Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A.S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., Barbosa, L.D.S.N.S., 2021. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, 120467
  22. Bohre, A., Dutta, S., Saha, B., Abu-Omar, M.M., 2015. Upgrading furfurals to drop-in biofuels: An overview. ACS Sustain. Chem. Eng. 3, 1263–1277
  23. Bradley, D., Lawes, M., Liu, K., Verhelst, S., Woolley, R., 2007. Laminar burning velocities of lean hydrogen–air mixtures at pressures up to 1.0 MPa. Combust. Flame 149, 162–172
  24. Buchori, L., Djaeni, M., Ratnawati, R., Retnowati, D.S., Hadiyanto, H., Anggoro, D.D., 2020. Glycerolysis Using KF/CaO-MgO Catalyst: Optimisation and Reaction Kinetics. J. Teknol. 82
  25. Bui, T.M.T., Nguyen Thi, T.X., Vo, A.V., Bui, V.G., Nižetić, S., 2021. Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study. J. Energy Resour. Technol. 143. https://doi.org/10.1115/1.4051574
  26. Bui, T.T., Luu, H.Q., Konur, O., Huu, T., Pham, M.T., 2020. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources, Part A Recover. Util. Environ. Eff. 1–16. https://doi.org/10.1080/15567036.2020.1860163
  27. Burke, M.P., Chen, Z., Ju, Y., Dryer, F.L., 2009. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame 156, 771–779
  28. Cao, D.N., Luu, H.Q., Bui, V.G., Tran, T.T.H., 2020. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources, Part A Recover. Util. Environ. Eff. 1–18
  29. Chan, D.N., 2018. Properties of DMF-fossil gasoline RON95 blends in the consideration as the alternative fuel. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 2555–2560
  30. Chau MQ, Le V V, Al-Tawaha A, Pham V V (2020) A simulation research of heat transfers and chemical reactions in the fuel steam reformer using exhaust gas energy from motorcycle engine. J Mech Eng Res Dev 43:89–102
  31. Chau, M.Q., Nguyen, D.C., Hoang, A.T., Tran, Q.V., Pham, V.V., 2020. A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1933–1938
  32. Chen, G., Shen, Y., Zhang, Q., Yao, M., Zheng, Z., Liu, H., 2013. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2, 5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends. Energy 54, 333–342
  33. Chen, N., Zhu, Z., Su, T., Liao, W., Deng, C., Ren, W., Zhao, Y., Lü, H., 2020. Catalytic hydrogenolysis of hydroxymethylfurfural to highly selective 2, 5-dimethylfuran over FeCoNi/h-BN catalyst. Chem. Eng. J. 381, 122755
  34. Chen, W.-H., Nižetić, S., Sirohi, R., Huang, Z., Luque, R., M.Papadopoulos, A., Sakthivel, R., Phuong Nguyen, X., 2021. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresour. Technol. 126207. https://doi.org/10.1016/j.biortech.2021.126207
  35. Chen, Z., Burke, M.P., Ju, Y., 2009. Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames. Proc. Combust. Inst. 32, 1253–1260
  36. Cheng, C.K., Ong, H.C., Fattah, I.M.R., Chong, C.T., Sakthivel, R., Ok, Y.S., 2021. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 223, 106997. https://doi.org/10.1016/j.fuproc.2021.106997
  37. Chiang, Y., Bassas, H.N., Lively, R.P., Nair, S., 2020. Separation and Purification of 2, 5-Dimethylfuran: Process Design and Comparative Technoeconomic and Sustainability Evaluation of Simulated Moving Bed Adsorption and Conventional Distillation. ACS Sustain. Chem. Eng. 8, 12482–12492
  38. Chidambaram, M., Bell, A.T., 2010. A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids. Green Chem. 12, 1253–1262
  39. Chong, C.T., Nizetic, S., Ong, H.C., Atabani, A.E., Pham, V.V., 2021. Acid-based lignocellulosic biomass biorefinery for bioenergy production: advantages, application constraints, and perspectives. J. Environ. Manage
  40. Christwardana, M., Hadiyanto, H., Motto, S.A., Sudarno, S., Haryani, K., 2020. Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass and Bioenergy 139, 105617. https://doi.org/10.1016/j.biombioe.2020.105617
  41. Chu, H., Xiang, L., Nie, X., Ya, Y., Gu, M., Jiaqiang, E., 2020. Laminar burning velocity and pollutant emissions of the gasoline components and its surrogate fuels: A review. Fuel 269, 117451
  42. Daniel, R., Wang, C., Xu, H., Tian, G., 2012a. Split-injection strategies under full-load using DMF, a new biofuel candidate, compared to ethanol in a GDI engine. SAE Technical Paper
  43. Daniel, R., Wei, L., Xu, H., Wang, C., Wyszynski, M.L., Shuai, S., 2012b. Speciation of hydrocarbon and carbonyl emissions of 2, 5-dimethylfuran combustion in a DISI engine. Energy & fuels 26, 6661–6668
  44. Djokic, M., Carstensen, H.-H., Van Geem, K.M., Marin, G.B., 2013. The thermal decomposition of 2, 5-dimethylfuran. Proc. Combust. Inst. 34, 251–258
  45. Dong, V.H., Nguyen, X.P., Le, N.D., Pham, V.V., Huynh, T.T., 2021. Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources, Part A Recover. Util. Environ. Eff. 1–13. https://doi.org/10.1080/15567036.2021.1965264
  46. Dong, V.H., Tran, V.D., Le, A.T., 2019. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J. Mar. Eng. Technol. https://doi.org/10.1080/20464177.2019.1595355
  47. Dung, V.T., Anh, H.T., 2020. Experimental Analysis on the Ultrasound-based Mixing Technique Applied to Ultra-low Sulphur Diesel and Bio-oils 9, 307–313
  48. Dutta, S., 2012. Deoxygenation of biomass‐derived feedstocks: hurdles and opportunities. ChemSusChem 5, 2125–2127
  49. Dutta, S., De, S., Alam, M.I., Abu-Omar, M.M., Saha, B., 2012. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal. https://doi.org/10.1016/j.jcat.2011.12.017
  50. Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K., Law, C.K., Qi, F., 2014. Advances and challenges in laminar flame experiments and implications for combustion chemistry. Prog. Energy Combust. Sci. 43, 36–67
  51. Engel, D., I.Ölçer, A., Pham, V.V., Nayak, S.K., 2021. Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: An application review on the compression and spark ignition engine. Fuel Process. Technol. https://doi.org/10.1016/j.fuproc.2020.106687
  52. Feng, L., Li, X., Lin, Y., Liang, Y., Chen, Y., Zhou, W., 2020. Catalytic hydrogenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran over Ru based catalyst: Effects of process parameters on conversion and products selectivity. Renew. Energy 160, 261–268
  53. Fenton, J., 1998. Handbook of automotive powertrains and chassis design. Professional Engineering Publishing
  54. Ga Bui, V., Nižetić, S., Viet Pham, V., Tuan Le, A., Vang Le, V., 2021. Combustion and emission characteristics of spark and compression ignition engine fueled with 2,5-dimethylfuran (DMF): A comprehensive review. Fuel 288, 119757. https://doi.org/https://doi.org/10.1016/j.fuel.2020.119757
  55. Galmiche, B., Halter, F., Foucher, F., 2012. Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures. Combust. Flame 159, 3286–3299
  56. Geo, V.E., Thiyagarajan, S., Sonthalia, A., Prakash, T., Awad, S., Aloui, F., Pugazhendhi, A., 2021. CO2 reduction in a common rail direct injection engine using the combined effect of low carbon biofuels, hydrogen and a post combustion carbon capture system. Energy Sources, Part A Recover. Util. Environ. Eff. 1–20
  57. Giannakopoulos, G.K., Gatzoulis, A., Frouzakis, C.E., Matalon, M., Tomboulides, A.G., 2015. Consistent definitions of “Flame Displacement Speed” and “Markstein Length” for premixed flame propagation. Combust. Flame 162, 1249–1264
  58. Gillespie, F.R., 2014. An experimental and modelling study of the combustion of oxygenated hydrocarbons
  59. Giustini, A., Aschi, M., Park, H., Meloni, G., 2021. Theoretical and experimental study on the O (3 P)+ 2, 5-dimethylfuran reaction in the gas phase. Phys. Chem. Chem. Phys. 23, 19424–19434
  60. Guo, D., Liu, X., Cheng, F., Zhao, W., Wen, S., Xiang, Y., Xu, Q., Yu, N., Yin, D., 2020. Selective hydrogenolysis of 5-hydroxymethylfurfural to produce biofuel 2, 5-dimethylfuran over Ni/ZSM-5 catalysts. Fuel 274, 117853
  61. Gupta, J.G., Agarwal, A.K., 2021. Engine durability and lubricating oil tribology study of a biodiesel fuelled common rail direct injection medium-duty transportation diesel engine. Wear 486, 204104
  62. Hadiyanto, H., Halim, M.A.R., Muhammad, F., Soeprobowati, T.R., Sularto, S., 2021. Potential for Environmental Services Based on the Estimation of Reserved Carbon in the Mangunharjo Mangrove Ecosystem. Polish J. Environ. Stud. 30, 3545–3552
  63. Han, W., Tang, M., Li, J., Li, X., Wang, J., Zhou, L., Yang, Y., Wang, Y., Ge, H., 2020. Selective hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts. Appl. Catal. B Environ. 268, 118748
  64. Han, X., Wang, Z., Wang, S., Whiddon, R., He, Y., Lv, Y., Konnov, A.A., 2019. Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel 239, 1028–1037
  65. Hoang, A.T., 2021. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Process. Technol. 218, 106840
  66. Hoang, A.T., 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171, 795–808. https://doi.org/10.1016/j.energy.2019.01.076
  67. Hoang, A.T., 2018. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. J. Mar. Eng. Technol. 1–13. https://doi.org/10.1080/20464177.2018.1532734
  68. Hu, B., Warczinski, L., Li, X., Lu, M., Bitzer, J., Heidelmann, M., Eckhard, T., Fu, Q., Schulwitz, J., Merko, M., 2020. Formic Acid‐Assisted Selective Hydrogenolysis of 5‐Hydroxymethylfurfural to 2, 5‐Dimethylfuran over Bifunctional Pd Nanoparticles Supported on N‐doped Mesoporous Carbon. Angew. Chemie Int. Ed
  69. Hu, L., Jiang, Y., Xu, Jiaxing, He, A., Wu, Z., Xu, Jiming, 2020. Chemocatalytic pathways for high-efficiency production of 2, 5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural, in: Biomass, Biofuels, Biochemicals. Elsevier, pp. 377–394
  70. Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., Jiang, D., 2006. Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 146, 302–311
  71. Huynh, T.T., Nguyen, X.P., Le, A.T., Pham, V.V., 2021. COVID-19 and the Global Shift Progress to Clean Energy. J. Energy Resour. Technol. 143, 94701. https://doi.org/10.1115/1.4050779
  72. İlçin, K., Altun, Ş., 2021. Effect of biodiesel addition in a blend of isopropanol-butanol-ethanol and diesel on combustion and emissions of a CRDI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 1–13
  73. Jomaas, G., Law, C.K., Bechtold, J.K., 2007. On transition to cellularity in expanding spherical flames. J. Fluid Mech. 583, 1
  74. Kadarwati, S., Apriliani, E., Annisa, R.N., Jumaeri, J., Cahyono, E., Wahyuni, S., 2021. Esterification of Bio-Oil Produced from Sengon (Paraserianthes falcataria) Wood Using Indonesian Natural Zeolites. Int. J. Renew. Energy Dev. 10, 747–754
  75. Katagi, K.S., Kadam, N.S., Munnolli, R.S., Benni, S.D., 2021. Investigation on seed oil chemistry of Bauhinia racemosa for the production of liquid biofuel. Energy Sources, Part A Recover. Util. Environ. Eff. 1–13
  76. Klemeš, J.J., Jiang, P., Van Fan, Y., Bokhari, A., Wang, X.-C., 2021. COVID-19 pandemics Stage II–energy and environmental impacts of vaccination. Renew. Sustain. Energy Rev. 150, 111400
  77. Konnov, A.A., Mohammad, A., Kishore, V.R., Kim, N. Il, Prathap, C., Kumar, S., 2018. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+ air mixtures. Prog. Energy Combust. Sci. 68, 197–267
  78. Kumar, L., Bharadvaja, N., 2020. A review on microalgae biofuel and biorefinery: challenges and way forward. Energy Sources, Part A Recover. Util. Environ. Eff. 1–24
  79. Kumar, R., Kumar, S., 2021. Formulation of a three-component gasoline surrogate model using laminar burning velocity data at elevated mixture temperatures. Fuel 306, 121581
  80. Law, C.K., 2010. Combustion physics. Cambridge university press
  81. Law, C.K., Jomaas, G., Bechtold, J.K., 2005. Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment. Proc. Combust. Inst. 30, 159–167
  82. Le Anh, T., Pham Van, V., Anh Hoang, T., 2019. A core correlation of spray characteristics, deposit formation, and combustion of a high-speed diesel engine fueled with Jatropha oil and diesel fuel. Fuel 244, 159–175. https://doi.org/10.1016/j.fuel.2019.02.009
  83. Le, T.H., Huynh, T.T., Nguyen, X.P., Nguyen, T.K.T., 2021. An analysis and review on the global NO2 emission during lockdowns in COVID-19 period. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2021.1902431
  84. Le, V.V., Hoang, T.A., 2017. The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil. Int. J. Renew. Energy Dev. 6, 1
  85. Le, V.V., Nižetić, S., Ölçer, A.I., 2021. Flame Characteristics and Ignition Delay Times of 2,5-Dimethylfuran: A Systematic Review With Comparative Analysis. J. Energy Resour. Technol. 143. https://doi.org/10.1115/1.4048673
  86. Li, Q., Fu, J., Wu, X., Tang, C., Huang, Z., 2012. Laminar flame speeds of DMF/iso-octane-air-N2/CO2 mixtures. Energy & fuels 26, 917–925
  87. Li, Y., Xu, W., Jiang, Y., Liew, K.M., 2022. Effects of diluents on laminar burning velocity and cellular instability of 2-methyltetrahydrofuran-air flames. Fuel 308, 121974
  88. Li, Ya, Xu, W., Jiang, Y., Liew, K.M., Qiu, R., 2021. Laminar burning velocities of 2-methyltetrahydrofuran at elevated pressures. Proc. Combust. Inst. 38, 2175–2183
  89. Li, Yuqiang, Zhao, J., Tang, W., Abubakar, S., Wu, G., Huang, J., 2021. Development and application of a practical diesel-n-butanol-PAH mechanism in engine combustion and emissions prediction. Energy Sources, Part A Recover. Util. Environ. Eff. 1–15
  90. Lifshitz, A., Tamburu, C., Shashua, R., 1998. Thermal decomposition of 2, 5-dimethylfuran. Experimental results and computer modeling. J. Phys. Chem. A 102, 10655–10670
  91. Lin, X., Li, M., Jian, Y., Huang, J., Yang, S., Li, H., 2021. One-pot domino conversion of biomass-derived furfural to γ-valerolactone with an in-situ formed bifunctional catalyst. Energy Sources, Part A Recover. Util. Environ. Eff. 1–17
  92. Liu, H., Wang, X., Zhang, D., Dong, F., Liu, X., Yang, Y., Huang, H., Wang, Y., Wang, Q., Zheng, Z., 2019. Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. Energies 12, 1845
  93. Liu, H., Zhang, P., Liu, X., Chen, B., Geng, C., Li, B., Wang, H., Li, Z., Yao, M., 2018. Laser diagnostics and chemical kinetic analysis of PAHs and soot in co-flow partially premixed flames using diesel surrogate and oxygenated additives of n-butanol and DMF. Combust. Flame 188, 129–141
  94. Ma’As, M.F., Ghazali, H.M., Chieng, S., 2020. Bioethanol production from Brewer’s rice by Saccharomyces cerevisiae and Zymomonas mobilis: evaluation of process kinetics and performance. Energy Sources, Part A Recover. Util. Environ. Eff. 1–14
  95. Ma, X., Jiang, C., Xu, H., Ding, H., Shuai, S., 2014a. Laminar burning characteristics of 2-methylfuran and isooctane blend fuels. Fuel 116, 281–291
  96. Ma, X., Jiang, C., Xu, H., Shuai, S., Ding, H., 2013. Laminar burning characteristics of 2-methylfuran compared with 2, 5-dimethylfuran and isooctane. Energy & fuels 27, 6212–6221
  97. Ma, X., Xu, H., Jiang, C., Shuai, S., 2014b. Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine. Appl. Energy 122, 247–260
  98. Mhadmhan, S., Franco, A., Pineda, A., Reubroycharoen, P., Luque, R., 2019. Continuous Flow Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Using Highly Active and Stable Cu–Pd/Reduced Graphene Oxide. ACS Sustain. Chem. Eng. 7, 14210–14216
  99. Minh, T., Anh, T., 2018. Influences of heating temperatures on physical properties, spray characteristics of bio-oils and fuel supply system of a conventional diesel engine. Int. J. Adv. Sci. Eng. Inf. Technol. https://doi.org/10.18517/ijaseit.8.5.5487
  100. Murugesan, P., Hoang, A.T., Perumal Venkatesan, E., Santosh Kumar, D., Balasubramanian, D., Le, A.T., Pham, V.V., 2021. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.08.107
  101. Naqash, M.T., Aburamadan, M.H., Harireche, O., AlKassem, A., Farooq, Q.U., 2021. The Potential of Wind Energy and Design Implications on Wind Farms in Saudi Arabia. Int. J. Renew. Energy Dev. 10, 839–856
  102. Nayak, S.K., Behera, G.R., Mishra, P.C., Kumar, A., 2017. Functional characteristics of jatropha biodiesel as a promising feedstock for engine application. Energy Sources, Part A Recover. Util. Environ. Eff. 39, 299–305. https://doi.org/10.1080/15567036.2015.1120826
  103. Nayak, S.K., Huynh, T.T., Ölçer, A., Le, A.T., 2020. A remarkable review of the effect of lockdowns during COVID-19 pandemic on global PM emissions. Energy Sources, Part A Recover. Util. Environ. Eff. 1–16. https://doi.org/10.1080/15567036.2020.1853854
  104. Nayak, S.K., Mishra, P.C., 2017. Analysis of a diesel engine fuelled with jojoba blend and coir pith producer gas. Int. J. Automot. Mech. Eng. 14, 4675–4689
  105. Nayak, S.K., Mishra, P.C., 2016. Emission from utilization of producer gas and mixes of jatropha biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. 38, 1993–2000. https://doi.org/10.1080/15567036.2014.987857
  106. Nikkhah, A., Bagheri, I., Psomopoulos, C., Payman, S.H., Zareiforoush, H., El Haj Assad, M., Bakhshipour, A., Ghnimi, S., 2019. Sustainable second-generation biofuel production potential in a developing country case study. Energy Sources, Part A Recover. Util. Environ. Eff. 1–14
  107. Nishimura, S., Ikeda, N., Ebitani, K., 2014. Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic catalyst. Catal. Today 232, 89–98
  108. Noor, M.M., Pham, X.D., Tuan, H.A., 2018. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. Int. J. Automot. Mech. Eng. 15, 5110–5125. https://doi.org/10.15282/ijame.15.1.2018.16.0395
  109. Norhafana, M., Noor, M.M., Sharif, P.M., Hagos, F.Y., Hairuddin, A.A., Kadirgama, K., Ramasamy, D., Rahman, M.M., Alenezi, R., Hoang, A.T., 2018. A review of the performance and emissions of nano additives in diesel fuelled compression ignition-engines, in: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 12035
  110. Ohyagi, S., Harigaya, Y., Kakizaki, K., Toda, F., 2010. Estimation of Flame Propagation in Spark-Ignition Engine by Using Turbulent Burning Model
  111. Ölçer, A.I., Nguyen, X.P., Huynh, T.T., 2021. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A Recover. Util. Environ. Eff. 1–4. https://doi.org/10.1080/15567036.2021.1879969
  112. Ölçer, A.I., Nižetić, S., 2021. Prospective review on the application of biofuel 2, 5-dimethylfuran to diesel engine. J. Energy Inst. 94, 360–386. https://doi.org/10.1016/j.joei.2020.10.004
  113. Ong, H.C., Nižetić, S., Mofijur, M., Ahmed, S.F., Ashok, B., Bui, V.T.V., Chau, M.Q., 2021a. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere
  114. Ong, H.C., Nizetic, S., Ölçer, A.I., 2021b. Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-Dimethylfuran: Progress and prospective. Fuel 286, 119337. https://doi.org/10.1016/j.fuel.2020.119337
  115. Ong, V.Z., Wu, T.Y., 2020. An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products. Renew. Sustain. Energy Rev. 132, 109924
  116. Onlamnao, K., Phromphithak, S., Tippayawong, N., 2020. Generating Organic Liquid Products from Catalytic Cracking of Used Cooking Oil over Mechanically Mixed Catalysts. Int. J. Renew. Energy Dev. 9
  117. Pandey, A., Huang, Z., Luque, R., Ng, Kim Hoong Papadopoulos, A., Chen, W.-H., Rajamohan, S., Hadiyanto, H., Pham, V., Nguyen, X., Hoang, A., 2022. Catalyst-based synthesis of 2,5-dimethylfuran from carbohydrates as sustainable biofuel production route. ACS Sustain. Chem. Eng
  118. Peña, G.D.J.G., Hammid, Y.A., Raj, A., Stephen, S., Anjana, T., Balasubramanian, V., 2018. On the characteristics and reactivity of soot particles from ethanol-gasoline and 2, 5-dimethylfuran-gasoline blends. Fuel 222, 42–55
  119. Pham, M.T., Le, T.H., Hadiyanto, H., Pham, V.V., Hoang, A.T., 2021. Influence of various basin types on performance of passive solar still: A review. Int. J. Renew. Energy Dev. https://doi.org/10.14710/IJRED.2021.38394
  120. Pham, V.V., 2019. Technological perspective for reducing emissions from marine engines. Int. J. Adv. Sci. Eng. Inf. Technol. 9. https://doi.org/10.18517/ijaseit.9.6.10429
  121. Pham, V.V., Hoang, A.T., 2019. A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources, Part A Recover. Util. Environ. Eff. 41, 611–625. https://doi.org/10.1080/15567036.2018.1520344
  122. Pradhan, S., Ghose, D., Shabbiruddin., 2020. Present and future impact of COVID-19 in the renewable energy sector: A case study on India. Energy Sources, Part A Recover. Util. Environ. Eff. 1–11
  123. Praveena, V., Martin, L.J., Varuvel, E.G., 2021. Experimental evaluation of a compression ignition engine enacted with biofuel from beverage industry waste and higher grades of alcohol. Energy Sources Part A Recover. Util. Environ. Eff
  124. Przydacz, M., Jędrzejczyk, M., Rogowski, J., Szynkowska-Jóźwik, M., Ruppert, A.M., 2020. Highly Efficient Production of DMF from Biomass-Derived HMF on Recyclable Ni-Fe/TiO2 Catalysts. Energies 13, 4660
  125. Ramamoorthy, N.K., Nagarajan, R., Ravi, S., Sahadevan, R., 2020. An innovative plasma pre-treatment process for lignocellulosic bio-ethanol production. Energy Sources, Part A Recover. Util. Environ. Eff. 1–15
  126. Reddy, K.H., Nanthagopal, K., 2021. Investigations on compression ignition engine durability through long-term endurance study using low viscous biofuel blends. Clean Technol. Environ. Policy 23, 2413–2428
  127. Román-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A., 2007. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature. https://doi.org/10.1038/nature05923
  128. Roy, S., Zare, S., Askari, O., 2019. Understanding the effect of oxygenated additives on combustion characteristics of gasoline. J. Energy Resour. Technol. 141
  129. Sahu, A., Wang, C., Jiang, C., Xu, H., Ma, X., Xu, C., Bao, X., 2019. Effect of CO2 and N2 dilution on laminar premixed MTHF/air flames: Experiments and kinetic studies. Fuel 255, 115659
  130. Sahu, A.B., Markendaya, S., Badhuk, P., Ravikrishna, R. V, 2020. Experiments and Kinetic Modelling of Diffusion Flame Extinction of 2-Methylfuran, 2, 5-Dimethylfuran and Binary Mixtures with Isooctane. Energy & Fuels
  131. Sandro, N., Viet, P. van, 2020. A state-of-the-art review on emission characteristics of SI and CI engines fueled with 2,5-dimethylfuran biofuel. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-11629-8
  132. Sauer, C., Lorén, A., Schaefer, A., Carlsson, P.-A., 2021. Valorisation of 2, 5-dimethylfuran over zeolite catalysts studied by on-line FTIR-MS gas phase analysis. Catal. Sci. Technol
  133. Simsek, S., Uslu, S., Sahin, M., Arlı, F., Bilgic, G., 2021. Impact of a novel fuel additive containing boron and hydrogen on diesel engine performance and emissions. Energy Sources, Part A Recover. Util. Environ. Eff. 1–15
  134. Somers, K.P., Simmie, J.M., Gillespie, F., Conroy, C., Black, G., Metcalfe, W.K., Battin-Leclerc, F., Dirrenberger, P., Herbinet, O., Glaude, P.-A., 2013. A comprehensive experimental and detailed chemical kinetic modelling study of 2, 5-dimethylfuran pyrolysis and oxidation. Combust. Flame 160, 2291–2318
  135. Syukri, S., Ferdian, F., Rilda, Y., Putri, Y.E., Efdi, M., Septiani, U., 2021. Synthesis of Graphene Oxide Enriched Natural Kaolinite Clay and Its Application For Biodiesel Production. Int. J. Renew. Energy Dev. 10
  136. Tabatabaei, M., Aghbashlo, M., 2020. A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/https://doi.org/10.1080/15567036.2019.1623346
  137. Tabatabaei, M., Aghbashlo, M., Carlucci, A.P., Ölçer, A.I., Le, A.T., Ghassemi, A., 2020. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renew. Sustain. Energy Rev. 135, 110204. https://doi.org/10.1016/j.rser.2020.110204
  138. Tajuelo, M., Rodríguez, D., Rodríguez, A., Escalona, A., Viteri, G., Aranda, A., Diaz-de-Mera, Y., 2021. Secondary organic aerosol formation from the ozonolysis and oh-photooxidation of 2, 5-dimethylfuran. Atmos. Environ. 245, 118041
  139. Tang, C., Zhang, Y., Huang, Z., 2014. Progress in combustion investigations of hydrogen enriched hydrocarbons. Renew. Sustain. Energy Rev. 30, 195–216
  140. Teraji, A., Tsuda, T., Noda, T., Kubo, M., Itoh, T., 2005. Development of a novel flame propagation model (UCFM: universal coherent flamelet model) for SI engines and its application to knocking prediction. SAE Technical Paper
  141. Tham, B.C., Vang, L. Van, Viet, P. Van, 2019. An investigation of deposit formation in the injector, spray characteristics, and performance of a diesel engine fueled with preheated vegetable oil and diesel fuel. Energy Sources, Part A Recover. Util. Environ. Eff. 41, 2882–2894. https://doi.org/10.1080/15567036.2019.1582731
  142. Thomas, S., Sandro Nižetić, Olcer, A.I., Ong, H.C., Chen, W.-H., Chong, C.T., Bandh, S.A., Nguyen, X.P., 2021. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154, 112322. https://doi.org/10.1016/j.enpol.2021.112322
  143. Thu, N., Anh, H., 2017. Emission characteristics of a diesel engine fuelled with preheated vegetable oil and biodiesel. Philipp. J. Sci 146, 475–482
  144. Tian, G., Daniel, R., Li, H., Xu, H., Shuai, S., Richards, P., 2010. Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline. Energy and Fuels. https://doi.org/10.1021/ef100452c
  145. Tian, Z., Li, J., Yan, Y., 2019. A reduced mechanism for 2, 5-dimetylfuran with assembled mechanism reduction methods. Fuel 250, 52–64
  146. Togbé, C., Tran, L.-S., Liu, D., Felsmann, D., Oßwald, P., Glaude, P.-A., Sirjean, B., Fournet, R., Battin-Leclerc, F., Kohse-Höinghaus, K., 2014. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography–Part III: 2, 5-Dimethylfuran. Combust. Flame 161, 780–797
  147. Tran, D.Q., Tran, T.T., Le, A.T., 2020. Performance and combustion characteristics of a retrofitted CNG engine under various piston-top shapes and compression ratios. Energy Sources, Part A Recover. Util. Environ. Eff. 1–17. https://doi.org/10.1080/15567036.2020.1804016
  148. Tran, Q.V., Nguyen, D.C., Hadiyanto, H., Wattanavichien, K., Pham, V.V., 2021. A review on the performance, combustion, and emission characteristics of spark-ignition engine fueled with 2, 5-Dimethylfuran compared to ethanol and gasoline. J. Energy Resour. Technol. 143, 40801
  149. Tse, S.D., Zhu, D.L., Law, C.K., 2000. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres. Proc. Combust. Inst. 28, 1793–1800
  150. Tuan Anh, H., 2020. Applicability of fuel injection techniques for modern diesel engines, in: AIP Conference Proceedings. p. 020018. https://doi.org/10.1063/5.0000133
  151. Van Pham, V., Anh Hoang, T., 2020. A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation. Int. Conf. Emerg. Appl. Mater. Sci. Technol. ICEAMST 2020. https://doi.org/10.1063/5.0007492
  152. Vieira, S., Barros, M.V., Sydney, A.C.N., Piekarski, C.M., de Francisco, A.C., de Souza Vandenberghe, L.P., Sydney, E.B., 2020. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresour. Technol. 299, 122635
  153. Viet Pham, V., Tuan Hoang, A., 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 148, 111265. https://doi.org/10.1016/j.rser.2021.111265
  154. Vinayagam, N.K., Solomon, J.M., Subramaniam, M., Balasubramanian, D., EL-Seesy, A.I., Nguyen, X.P., 2021. Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques. J. Clean. Prod. 306, 127310. https://doi.org/10.1016/j.jclepro.2021.127310
  155. Vinh, Q.T., Duong, X.P., Anh, T.H., 2018. Performance and emission characteristics of popular 4-stroke motorcycle engine in vietnam fuelled with biogasoline compared with fossil gasoline. Int. J. Mech. Mechatronics Eng 18, 97–103
  156. Vo, A.V., Bui, V.G., Tran, V.N., Bui, T.M.T., 2020. A simulation study on a port-injection SI engine fueled with hydroxy-enriched biogas. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2020.1804487
  157. vom Lehn, F., Cai, L., Cáceres, B.C., Pitsch, H., 2021. Exploring the fuel structure dependence of laminar burning velocity: A machine learning based group contribution approach. Combust. Flame 232, 111525
  158. Wahyono, Y., Hadiyanto, H., Budihardjo, M.A., Adiansyah, J.S., 2020. Assessing the environmental performance of palm oil biodiesel production in Indonesia: A life cycle Assessment approach. Energies 13, 3248
  159. Wang, S., Yao, L., 2020. Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine. Polish Marit. Res. 27, 85–95. https://doi.org/10.2478/pomr-2020-0030
  160. Wang, X., Liang, X., Li, J., Li, Q., 2019. Catalytic hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to biofuel 2, 5-dimethylfuran. Appl. Catal. A Gen
  161. Weerasinghe, W.M.L.I., Madusanka, D.A.T., Manage, P.M., 2021. Isolation and Identification of Cellulase Producing and Sugar Fermenting Bacteria for Second-Generation Bioethanol Production. Int. J. Renew. Energy Dev. 10, 699–711
  162. Wei, M., Li, S., Liu, J., Guo, G., Sun, Z., Xiao, H., 2017. Effects of injection timing on combustion and emissions in a diesel engine fueled with 2,5-dimethylfuran-diesel blends. Fuel. https://doi.org/10.1016/j.fuel.2016.11.084
  163. Williams, F.A., 2018. Combustion theory. CRC Press
  164. Wirawan, I.K.G., Soenoko, R., Wahyudi, S., 2014. Premixed Combustion of Kapok (ceiba pentandra) seed oil on Perforated Burner. Int. J. Renew. Energy Dev. 3, 91
  165. Wu, F., Jomaas, G., Law, C.K., 2013. An experimental investigation on self-acceleration of cellular spherical flames. Proc. Combust. Inst. 34, 937–945
  166. Wu, X., Huang, Z., Jin, C., Wang, X., Wei, L., 2010. Laminar burning velocities and Markstein lengths of 2, 5-dimethylfuran-air premixed flames at elevated temperatures. Combust. Sci. Technol. 183, 220–237
  167. Wu, X., Huang, Z., Jin, C., Wang, X., Zheng, B., Zhang, Y., Wei, L., 2009. Measurements of laminar burning velocities and Markstein lengths of 2, 5-dimethylfuran− air− diluent premixed flames. Energy & fuels 23, 4355–4362
  168. Wu, X., Huang, Z., Wang, X., Jin, C., Tang, C., Wei, L., Law, C.K., 2011. Laminar burning velocities and flame instabilities of 2, 5-dimethylfuran–air mixtures at elevated pressures. Combust. Flame 158, 539–546
  169. Wu, X., Li, Q., Fu, J., Tang, C., Huang, Z., Daniel, R., Tian, G., Xu, H., 2012. Laminar burning characteristics of 2, 5-dimethylfuran and iso-octane blend at elevated temperatures and pressures. Fuel 95, 234–240
  170. Xie, Y., Li, Q., 2019. Effect of the initial pressures on evolution of intrinsically unstable hydrogen/air premixed flame fronts. Int. J. Hydrogen Energy 44, 17030–17040
  171. Xu, N., Gong, J., Huang, Z., 2016. Review on the production methods and fundamental combustion characteristics of furan derivatives. Renew. Sustain. Energy Rev. 54, 1189–1211
  172. Xuan, N., Van, P., Anh, H., 2021. Use of Biodiesel Fuels in Diesel Engines, in: Biodiesel Fuels. CRC Press, pp. 317–341
  173. Xuan, P., Viet, P., 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 305, 127161. https://doi.org/10.1016/j.jclepro.2021.127161
  174. Ya, Y., Nie, X., Han, W., Xiang, L., Gu, M., Chu, H., 2020. Effects of 2, 5–dimethylfuran/ethanol addition on soot formation in n-heptane/iso-octane/air coflow diffusion flames. Energy 210, 118661
  175. Yin, C., Yan, J., 2016. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy 162, 742–762
  176. Zhang, J., Zhang, X., Yang, M., Singh, S., Cheng, G., 2020. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresour. Technol. 124522
  177. Zhang, L., Yang, K., Zhao, R., Chen, M., Ying, Y., Liu, D., 2020. Nanostructure and reactivity of soot from biofuel 2, 5-dimethylfuran pyrolysis with CO 2 additions. Front. Energy 1–15
  178. Zhang, Q., Chen, G., Zheng, Z., Liu, H., Xu, J., Yao, M., 2013. Combustion and emissions of 2, 5-dimethylfuran addition on a diesel engine with low temperature combustion. Fuel 103, 730–735
  179. Zhang, Y.-R., Wang, B.-X., Qin, L., Li, Q., Fan, Y.-M., 2019. A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural. Green Chem. 21, 1108–1113
  180. Zhu, C., Wang, H., Li, H., Cai, B., Lv, W., Cai, C., Wang, C., Yan, L., Liu, Q., Ma, L., 2019. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran over Alloyed Cu− Ni Encapsulated in Biochar Catalysts. ACS Sustain. Chem. Eng. 7, 19556–19569
  181. Zu, Y., Yang, P., Wang, J., Liu, X., Ren, J., Lu, G., Wang, Y., 2014. Efficient production of the liquid fuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Appl. Catal. B Environ. 146, 244–248
  182. Zullaikha, S., Putra, A.K., Fachrudin, F.H., Naulina, R.Y., Utami, S., Herminanto, R.P., Ju, Y.H., 2021. Experimental Investigation and Optimization of Non-Catalytic In-Situ Biodiesel Production from Rice Bran Using with RSM Historical Data Design. Int. J. Renew. Energy Dev. 10, 804–810
  183. ZuoHua, H., Sandro, N., Ashok, P., Xuan Phuong, Nguyen Rafael, L., Ongi, H.C., Zafar, S., Tri Hieu, L., Van Viet, P., 2021. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. J. Hydrog. Energy 1–20

Last update:

  1. Metal-organic frameworks as potential catalysts for biodiesel production and biomass conversion: Mechanism and characteristics

    Thanh Tuan Le, Prabhakar Sharma, Huu Son Le, Huu Cuong Le, Duc Trong Nguyen Le, Dao Nam Cao, Thanh Hai Truong, Viet Dung Tran. Industrial Crops and Products, 211 , 2024. doi: 10.1016/j.indcrop.2024.118232
  2. Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends

    Van Nhanh Nguyen, Biswajeet Nayak, Thingujam Jackson Singh, Swarup Kumar Nayak, Dao Nam Cao, Huu Cuong Le, Xuan Phuong Nguyen. International Journal of Hydrogen Energy, 54 , 2024. doi: 10.1016/j.ijhydene.2023.06.074
  3. Nanotechnology-based biodiesel: A comprehensive review on production, and utilization in diesel engine as a substitute of diesel fuel

    Thanh Tuan Le, Minh Ho Tran, Quang Chien Nguyen, Huu Cuong Le, Van Quy Nguyen, Dao Nam Cao, Prabhu Paramasivam. International Journal of Renewable Energy Development, 13 (3), 2024. doi: 10.61435/ijred.2024.60126

Last update: 2024-04-27 04:54:43

No citation recorded.