skip to main content

Enhancing Hydrogen Generation using CdS-modified TiO2 Nanotube Arrays in 2,4,6-Trichlorophenol as a Hole Scavenger

1Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek, Serpong, Tangerang, Banten 15320, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia

Received: 10 Mar 2022; Revised: 22 Jun 2022; Accepted: 30 Jun 2022; Available online: 10 Jul 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Nowadays, the lack of renewable energy such as hydrogen, and other environmental issues are problems that must be resolved. 2,4,6-Trichlorophenol (2,4,6-TCP) is classified as a recalcitrant pollutant due to its carcinogenic properties, high toxicity, and dangers to the environment therefore it needs to be eliminated. Hydrogen production using organic pollutant (2,4,6-TCP solution) as a hole scavenger on CdS-TiO2 nanotube arrays photocatalyst (TNTA-CdS) has been investigated at various CdS loading on TNTA and the initial concentration of 2,4,6-TCP. The TNTA sample was prepared by anodization and followed by an electrodeposition method to decorate CdS on TNTA. The H2 which was generated by reduction H+ and the 2,4,6-TCP removal was performed simultaneously by photocatalysis with TNTA-CdS as photocatalyst. The mole ratio of CdCl2:CH3CSNH2 as precursors of CdS deposited on TNTA (CdS loading) were 0.1:0.06, 0.2:0.12, and 0.4:0.24 and the initial concentration of 2,4,6-TCP were 10, 20 and 40 ppm. Meanwhile, the photocatalytic performance of the variations in CdS loading on TNTA and initial concentration of 2,4,6-TCP toward hydrogen generation was investigated in a photoreactor for 240 minutes under visible light irradiation with a mercury lamp as a photon source. The CdS decorating on TNTA was confirmed by SEM, EDX, and X-ray diffraction (XRD) characterization. According to the UV-Vis and XRD analysis, the TNTA-CdS samples have bandgap energies in the range of 2.71 - 2.89 eV and comprise a 100% anatase phase. Based on the photocatalysis results, the optimum composition of CdS loading is 0.2:0.16 (TNTA-CdS-2) which produced the highest total hydrogen (2.155 mmol/g) compared to the other compositions and produced 1.5 times higher compared to TNTA at 40 ppm of 2,4,6-TCP.

Fulltext View|Download
Keywords: 2,4,6-Trichlorophenol; Hole Scavenger; Hydrogen Evolution; Titania Nanotube Arrays; TNTA-CdS
Funding: Universitas Indonesia under contract NKB-386/UN2.RST/HKT.05.00/2021.NKB-386/UN2.RST/HKT.05.00/2021.

Article Metrics:

  1. Acar, C., Dincer, I. & Naterer, G. F. (2016). Review of photocatalytic water-splitting methods for sustainable hydrogen production. International Journal of Energy Research, 40(11), 1449-1473. DOI:
  2. Ali, M. H. H., Al-Qahtani, K. M., and El-Sayed, S. M. (2019). Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide. Egyptian Journal of Aquatic Research, 45(4), 321-328. DOI:
  3. Aphairaj, D., Wirunmongkol, T., Pavasupree, S. & Limsuwan, P. (2011). Effect of calcination temperatures on structures of TiO2 powders prepared by hydrothermal method using thai leucoxene mineral. Energy Procedia, 9, 539-544.
  4. Ba, Q., Jia, X., Huang, L., Li, X., Chen, W. & Mao, L. (2019). Alloyed Pd-Ni hollow nanoparticles as cocatalyst of CdS for improved photocatalytic activity toward hydrogen production. International Journal of Hydrogen Energy, 44(12), 5872-5880.
  5. Chen, Z., Dinh, H. N & Miller, E. (2013). Photoelectrochemical Water Splitting Standards, Experimental Methods, and Protocols, Springer New York, London
  6. Christoforidis, K. C., Syrgiannis, Z., La Parola, V., Montini, T., Petit, C., Stathatos, E., Godin, R., Durrant, J. R., Prato, M. & Fornasiero, P. (2018). Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. Nano Energy, 50, 468-478.
  7. Elangovan, M., Bharathaiyengar, S. M., and PonnanEttiyappan, J. (2021). Photocatalytic degradation of diclofenac using TiO2-CdS heterojunction catalysts under visible light irradiation. Environmental Science and Pollution Research, 28, 18186-18200.
  8. Elysabeth, T., Mulia, K., Ibadurrohman, M., Dewi, E. L. & Slamet. (2021). A comparative study of CuO deposition methods on titania nanotube arrays for photoelectrocatalytic ammonia degradation and hydrogen production. International Journal of Hydrogen Energy, 46(53), 26873-26885.
  9. Fu, Y., Qin, L., Huang, D., Zeng, G., Lai, C., Li, B., He, J., Yi, H., Zhang, M., Cheng, M. & Wen, X. (2019). Chitosan functionalized activated coke for Au nanoparticles anchoring: Green synthesis and catalytic activities in the hydrogenation of nitrophenols and azo dyes. Applied Catalysis B: Environmental, 255, 117740.
  10. Gholipour, M. R., Dinh, C-T., Beland, F. & Do, T-O. (2015). Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 7(18), 8187-8208.
  11. Hippargi, G., Mangrulkar, P., Chilkalwar, A., Labhsetwar, N. & Rayalu, S. (2018). Chloride ion: A promising hole scavenger for photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 43(14), 6815-6823.
  12. Holladay, J. D., Hu, J., King, D. L. & Wang, K. Y. (2009). An overview of hydrogen production technologies. Catalysis Today, 139(4), 244-260.
  13. Ji, H., Chang, F., Hu, X., Qin, W., and Shen, J. (2013). Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation. Chemical Engineering Journal, 218, 183-190.
  14. Junn, Ng. B., Putri, L. K., Kong, X.Y., The, Y.W., Pasbaskhsh, P., Piao, C.S. (2020). Z-Scheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 7, 1-42.
  15. Khodadadeh, F., Azar, P. A., Tehrani, M. S., and Assi, N. (2016). Photocatalytic degradation of 2,4,6-Trichlorophenol with CdS nanoparticles synthesized by a microwave-assisted sol-gel method. International Journal of Nano Dimensions, 7(3), 263-269.
  16. Khorsandi, H., Ghochlavi, N., and Aghapour, A. A. (2018). Biological degradation of 2,4,6-Trichlorophenol by a sequencing batch reactor. Environmental Processes, 5, 907-917.
  17. Lavand, A. B. and Malghe Y. S. (2015). Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite. Jornal of Saudi Society, 19(5), 471-478.
  18. Levy, I. K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F. G. & Litter, M. I. (2012). TiO2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine. Environmental Science & Technology, 46, 2299-2308. DOI:
  19. Li, B., Lai, C., Zhang, M., Zeng, G., Liu, S., Huang, D., Qin, L., Liu, X., Yi, F., An, N. & Chen, L. (2020). Graphdiyne: A rising star of electrocatalyst support for energy conversion. Advanced Energy Materials, 10(16), 20200177.
  20. Li, X., Chen, X., Niu, H., Han, X., Zhang, T., Liu, J., Lin, H. & Qu, F. (2015). The synthesis of CdS/TiO2 heteronanofibers with enhanced visible photocatalytic activity. Journal of Colloid and Interface Science, 452, 89-97.
  21. Liu, M., Jiao, Y., Zhan, S. & Wang, H. (2020). Ni3S2 nanowires supported on Ni foam as an efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Catalysis Today, 355, 596-601.
  22. Liu, Y., Zhou, H., Zhou, B., Li, J., Chen, H., Wang, J., Bai, J., Shangguan, W. & Cai, W. (2011). Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. International Journal of Hydrogen Energy, 36(1), 167-174.
  23. Luo, H., Zeng, Z., Zeng, G., Zhang, C., Xiao, R., Huang, D., Lai, C., Cheng, M., Wang, W., Xiong, W., Yang, Y., Qin, L., Zhou, C., Wang, H. & Tian, S. (2020). Recent progress on metal-organic frameworks based- and derived- photocatalysts for water splitting. Chemical Engineering Journal, 3883, 123196.
  24. Luo, N., Jiang, Z., Shi, H., Xiao, T., Edwards, P. P. (2009). Photo-catalytic conversion of oxygenated hydrocarbons to hydrogen over heteroatom-doped TiO2 catalysts. International Journal of Hydrogen Energy, 34(1), 125-129.
  25. Mehrpooya, M. & Habibi, R. (2020). A review on hydrogen production thermochemical water-splitting cycles. Journal of Cleaner Production, 275, 123836.
  26. Moreira, T.M.F., Santana, I.L., Moura, M.N., Ferreira, S.A.D., Lelis, M.F.F., Freitas, M.B.J.G. (2017). Recycling of negative electrodes from spent Ni-Cd batteries as CdO with nanoparticle sizes and its application in remediation of azo dye. Materials Chemistry and Physics, 195, 19-27.
  27. Park, H., Ou, H-H., Kang, U., Choi, J., Hoffmann, M. R. (2016). Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution. Catalysis Today, 266, 153-159.
  28. Ramirez, E. R., Tzompantzi-Morales, F., Gutierrez-Ortega, N., Mojica-Calvillo, H. G., and Castillo-Rodriguez, J. (2019). Photocatalytic degradation of 2,4,6-Trichlorophenol by MgO-MgFe2O4 derived from layered double hydroxide structures. Catalysts, 9, 454.
  29. Ratnawati, Gunlazuardi, J., Dewi, E. L. & Slamet. (2014). Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photo catalyst for production of hydrogen from glycerol-water solution. International Journal of Hydrogen Energy, 39, 16927-16935.
  30. Robel, I., Kuno, M, and Kamat, P. V. (2007). Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 129(14), 4136-4137.
  31. Sharotri, N. & Sud, D. (2016). Ultrasound-assisted synthesis and characterization of visible light-responsive nitrogen-doped TiO2 nanomaterials for removal 2-Chlorophenol. Desalination and Water Treatment, 57(19), 8776-8788.
  32. Shi, Y., Lei, X., Xia, L., Wu, Q. & Yao, W. (2020). Enhanced photocatalytic hydrogen production activity of CdS coated with Zn-anchored carbon layer. Chemical Engineering Journal, 393, 124751.
  33. Slamet, Ratnawati, Gunlazuardi, J. & Dewi, E. L. (2017). Enhanced photocatalytic activity of Pt deposited on titania nanotube arrays for hydrogen production with glycerol as a sacrificial agent. International Journal of Hydrogen Energy, 42(38), 24014-24025.
  34. Slametb and Raudina. (2017). Degradation of 2,4,6-Trichlorophenol and hydrogen production simultaneously by TiO2 nanotubes/graphene composite. Proceedings of the 3rd International Symposium on Applied Chemistry, AIP Conf. Proc. 1904, 020074-1-020074-7.
  35. Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Zhan, J., Li, M. & Liu, H. (2015). Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad-spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy, 11, 419-427.
  36. Tian, S., Zhang, C., Huang, D., Wang, R., Zeng, G., Yan, M., Xiong, W., Zhou, C., M. Cheng, M., Xue, W., Yang, Y. & Wang, W. (2020). Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides. Chemical Engineering Journal, 389, 123423.
  37. Veeraputhiran, V., Gomathinayagam V., Udhaya, A., Francy, K. & Kathrunnisa. (2015) B. Microwave Mediated Synthesis and Characterizations of CdO Nanoparticles. Journal of Advanced Chemical Sciences, 1, 17–19
  38. Wang, B., He, S., Feng, W., Zhang, L., Huang, X., Wang, K., Zhang, S. & Liu, P. (2018). Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 236, 233-239.
  39. Wang, B., Zhang, L., Chen, Z., Hu, S., Li, S., Wang, Z., Liu, J., and Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews, 43(15), 5234-5244.
  40. Xie, K., Wu, Z., Wang, m., Yu, J., Gong, C., Sun, L. & Lin, C. (2016). Room temperature synthesis of CdS nanoparticle-decorated TiO2 nanotube arrays by electrodeposition with improved visible-light photoelectrochemical properties. Electrochemistry Communications, 63, 56-59.
  41. Xu, Q., Zhang, L., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Jaroniec, M. (2018). Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Materials Today, 21(10), 1042-1063.
  42. Yu, C., Zhang, Z., Dong, Z. Xiong, Y., Wang, Y., Liu, Y., Cao, X., Dong, W., Liu, M. & Liu, Y. (2021). Fabrication of Heterostructured CdS/TiO2 Nanotube Arrays Composites for Photoreduction of U(VI) under Visible Light. Journal of Solid State Chemistry, 298, 122053.
  43. Zhao, Q., Li, X., Wang, N., Hou, Y., Quan, X. & Chen. G. (2009). Facile fabrication, characterization, and enhanced photoelectrocatalytic degradation performance of highly oriented TiO2 nanotube arrays. Journal of Nanoparticle Research, 11, 2153-2162.
  44. Zhao, D. & Feng Yang, C (2016). Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 54, 1048-1059.
  45. Zhao, Q., Sun, J., Li, S., Huang, C, Yao, W., Chen, W., Zeng, T. & Xu, Q. (2018). Single nickel atoms anchored on nitrogen-doped graphene as a highly active co-catalyst for photocatalytic H2 evolution. ACS Catalysis, 8(12), 11863.
  46. Zhao, Y., Huang, X., Gao, F., Tian, Q., Fang, Z-B. & Liu, P. (2019). Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity. Nanoscale, 11(18), 9085-9090.
  47. Zheng, Y., Dong, J., Huang, C., Xia, L., Wu, Q., Xu, Q.& Yao, W. (2020). Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution. Applied Catalysis B: Environmental, 260, 118220.
  48. Zhu, Y-P., Ren, T-Z., and Yuan, Z-Y. (2015). Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. Applied Materials & Interfaces, 7(30), 16850-16856.

Last update:

  1. Z-scheme charge transfer between a conjugated polymer and α-Fe2O3 for simultaneous photocatalytic H2 evolution and ofloxacin degradation

    Ziheng Xiao, Jie Xiao, Luxi Yuan, Minhua Ai, Faryal Idrees, Zhen-Feng Huang, Chengxiang Shi, Xiangwen Zhang, Lun Pan, Ji-Jun Zou. Journal of Materials Chemistry A, 12 (9), 2024. doi: 10.1039/D3TA07217G
  2. Effects of CaO addition into CuO/ZnO/Al2O3 catalyst on hydrogen production through water gas shift reaction

    Zulaicha Dwi Hastuti, Erlan Rosyadi, Hana Nabila Anindita, Imron Masfuri, Nurdiah Rahmawati, Tyas Puspita Rini, Trisno Anggoro, Wargiantoro Prabowo, Frendy Rian Saputro, Ade Syafrinaldy. International Journal of Renewable Energy Development, 13 (4), 2024. doi: 10.61435/ijred.2024.59257
  3. Non-thermal plasma assisted catalytic water splitting for clean hydrogen production at near ambient conditions

    Wenping Li, Mingyuan Cao, Shijun Meng, Zhaofei Li, Hao Xu, Lijia Liu, Hua Song. Journal of Cleaner Production, 387 , 2023. doi: 10.1016/j.jclepro.2023.135913

Last update: 2024-05-26 13:31:13

No citation recorded.