skip to main content

Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method

1Department of Mechanical Engineering, College of Engineering, Madda Walabu University, Bale Robe, Ethiopia

2Department of Mechanical Engineering, College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

3Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia

Received: 11 Mar 2022; Revised: 4 Jun 2022; Accepted: 9 Jul 2022; Available online: 21 Jul 2022; Published: 1 Nov 2022.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
This paper presents the kinetic modeling of biomass gasification in bubbling fluidized bed (BFB) gasifiers and optimization methods to maximize gasification products. The kinetic model was developed based on two-phase fluidization theory. In this work, reaction kinetics, hydrodynamic conditions, convective and diffusion effect, and the thermal cracking of tar kinetics were considered in the model. The model was coded in MATLAB and simulated. The result depicted good agreement with experimental work in literature. The sensitivity analysis was carried out and the effect of temperature ranging from 650  to 850  and steam to biomass ratio (S/B) ranging from 0.1 to 2 was investigated. The result showed that an increase in temperature promoted H2 production from 18.73 % to 36.87 %, reduced that of CO from 39.97 % to 34.2 %, and CH4 from 18.01 % to 11.65 %. Furthermore, surface response was constructed from the regression model and the mutual effect of temperature and S/B on gasification products and heating value was investigated. In addition, the desirability function was employed to optimize gasification product and heating value. The maximum gasification product yield was obtained at 827.9  and 0.1 S/B. The response predicted by desirability function at these optimum operational conditions was 30.1 %, 44.1 %, 13.2 %, 12.9 %, 14.035 MJ/Nm3, and 14.5 MJ/Nm3 for H2, CO, CO2, CH4, LHV, and HHV, respectively. Kinetic modeling of the biomass gasification in BFB process is still under development, which considers the diffusion effect, tar cracking, reaction kinetics, and hydrodynamic behavior. Moreover, the large number of previous studies gave priority to a single parameter investigation. However, this investigation can be extended to various parameters analysis simultaneously, which would give solid information on system performance analysis.
Fulltext View|Download
Keywords: Biomass gasification; Syngas; Fluidized bed; Kinetic modeling; Response surface; Optimization

Article Metrics:

  1. Agu, C. E., Pfeifer, C., Eikeland, M., Tokheim, L. A., & Moldestad, B. M. E. (2019). Detailed One-Dimensional Model for Steam-Biomass Gasification in a Bubbling Fluidized Bed. Energy and Fuels, 33(8), 7385–7397.
  2. Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806–815.
  3. Basu, P. (2018). Gasification theory. In Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory.
  4. Basu, P. B. T.-B. G. and P. (Ed.). (2010). Appendix C - Selected Design Data Tables (pp. 329–335). Academic Press.
  5. Bioenergy. (2020). International Renewable Energy Agency.
  6. Capuano, L. (2020). International Energy Outlook 2020 (IEO2020) United States milestones in meeting global energy consumption. US Energy Information Administration.
  7. Chen, X., Che, Q., Li, S., Liu, Z., Yang, H., Chen, Y., Wang, X., Shao, J., & Chen, H. (2019). Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, 196, 106180.
  8. Coker, A. K. (1995). Physical Property of Liquids and Gases. Fortran Programs for Chemical Process Design, Analysis, and Simulation, 103–149.
  9. Couto, N., Silva, V., Monteiro, E., Brito, P. S. D., & Rouboa, A. (2015). Modeling of fluidized bed gasification: Assessment of zero-dimensional and CFD approaches. Journal of Thermal Science, 24(4), 378–385.
  10. Daners, D. (2008). Chapter 1 Domain perturbation for linear and semi-linear boundary value problems. Handbook of Differential Equations: Stationary Partial Differential Equations, 6, 1–81.
  11. Dang, Q., Zhang, X., Zhou, Y., & Jia, X. (2021). Prediction and optimization of syngas production from a kinetic-based biomass gasification process model. Fuel Processing Technology, 212, 106604.
  12. Di Blasi, C. (2004). Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE Journal, 50(9), 2306–2319.
  13. Fairbanks, D. F., & Wilke, C. R. (1950). Diffusion Coefficients in Multicomponent Gas Mixtures. Industrial & Engineering Chemistry, 42(3), 471–475.
  14. Gopalakrishnan, P. (2013). Modelling of Biomass Steam Gasification in a Bubbling Fluidized Bed Gasifier. Thesis. University of Canterbury.
  15. Gordillo, E. D., & Belghit, A. (2011). A two phase model of high temperature steam-only gasification of biomass char in bubbling fluidized bed reactors using nuclear heat. International Journal of Hydrogen Energy, 36(1), 374–381.
  16. Grace, J. R. (2020). Hydrodynamics of bubbling fluidization. Essentials of Fluidization Technology, 131–152.
  17. Hai, I. U., Sher, F., Zarren, G., & Liu, H. (2019). Experimental investigation of tar arresting techniques and their evaluation for product syngas cleaning from bubbling fluidized bed gasifier. Journal of Cleaner Production, 240, 118239.
  18. Inayat, M., Sulaiman, S. A., Kurnia, J. C., & Shahbaz, M. (2019). Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review. Renewable and Sustainable Energy Reviews, 105, 252–267.
  19. Karmakar, M. K., & Datta, A. B. (2011). Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresource Technology, 102(2), 1907–1913.
  20. Klose, E., & Köpsel, R. (1993). Mathematical model for the gasification of coal under pressure. Fuel, 72(5), 714.
  21. La Villetta, M., Costa, M., & Massarotti, N. (2017). Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method. Renewable and Sustainable Energy Reviews, 74, 71–88.
  22. Li, Y. H., Chen, Z., Watkinson, P., Bi, X., Grace, J., Lim, C. J., & Ellis, N. (2018). A novel dual-bed for steam gasification of biomass. Biomass Conversion and Biorefinery, 8(2), 357–367.
  23. Monteiro, E., Ismail, T. M., Ramos, A., Abd El-Salam, M., Brito, P., & Rouboa, A. (2018). Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant. Energy, 142, 862–877.
  24. Motta, I. L., Miranda, N. T., Maciel Filho, R., & Wolf Maciel, M. R. (2018). Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews, 94, 998–1023.
  25. Nemtsov, D. A., & Zabaniotou, A. (2008). Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chemical Engineering Journal, 143(1–3), 10–31.
  26. Raheem, A., Zhao, M., Dastyar, W., Channa, A. Q., Ji, G., & Zhang, Y. (2019). Parametric gasification process of sugarcane bagasse for syngas production. International Journal of Hydrogen Energy, 44(31), 16234–16247.
  27. Ramos, A., Monteiro, E., & Rouboa, A. (2019). Numerical approaches and comprehensive models for gasification process: A review. Renewable and Sustainable Energy Reviews, 110, 188–206.
  28. Rathbone, R. (1993). Fluidization Engineering (Second Edition). Gas Separation & Purification, 7(1), 63.
  29. Ren, J., Cao, J. P., Zhao, X. Y., Yang, F. L., & Wei, X. Y. (2019). Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426.
  30. Richet, P., Bottinga, Y., Denielou, L., Petitet, J. P., & Tequi, C. (1982). Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochimica Acta, 46(12), 2639–2658.
  31. Safarian, S., Unnþórsson, R., & Richter, C. (2019). A review of biomass gasification modelling. Renewable and Sustainable Energy Reviews, 110, 378–391.
  32. Sahoo, A., & Ram, D. K. (2015). Gasifier performance and energy analysis for fluidized bed gasification of sugarcane bagasse. Energy, 90, 1420–1425.
  33. Samadi, S. H., Ghobadian, B., & Nosrati, M. (2020). Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran. Renewable Energy, 149, 1077–1091.
  34. Sebastiani, A., Macrì, D., Gallucci, K., & Materazzi, M. (2021). Steam - oxygen gasification of refuse derived fuel in fluidized beds: Modelling and pilot plant testing. Fuel Processing Technology, 216, 106783.
  35. Smith, J. M. (1950). Introduction to chemical engineering thermodynamics. In Journal of Chemical Education (Vol. 27, Issue 10).
  36. Tavares, R., Monteiro, E., Tabet, F., & Rouboa, A. (2020). Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus. Renewable Energy, 146, 1309–1314.
  37. Tong, W., Liu, Q., Yang, C., Cai, Z., Wu, H., & Ren, S. (2020). Effect of pore structure on CO2 gasification reactivity of biomass chars under high-temperature pyrolysis. Journal of the Energy Institute, 93(3), 962–976.
  38. Wang, Y., & Kinoshita, C. M. (1993). Kinetic model of biomass gasification. Solar Energy, 51(1), 19–25.
  39. Xiang, X., Gong, G., Shen, Y., Wang, C., & Shi, Y. (2019). A comprehensive mathematical model of a serial composite process for biomass and coal Co-gasification. International Journal of Hydrogen Energy, 44(5), 2603–2619.
  40. Xiong, Q., Mihandoost, M., Yaghoubi, E., & Asadi, A. (2018). Parametric investigation on biomass gasification in a fluidized bed gasifier and conceptual design of gasifier. Chemical Engineering & Processing : Process Intensifi cation, 127, 271–291.
  41. Xiong, Q., Yeganeh, M. M., Yaghoubi, E., Asadi, A., Doranehgard, M. H., & Hong, K. (2018). Parametric investigation on biomass gasification in a fluidized bed gasifier and conceptual design of gasifier. Chemical Engineering and Processing - Process Intensification, 127, 271–291.
  42. Zheng, H., & Vance Morey, R. (2014). An unsteady-state two-phase kinetic model for corn stover fluidized bed steam gasification process. Fuel Processing Technology, 124, 11–20.
  43. Zhu, L. T., Liu, Y. X., & Luo, Z. H. (2019). An enhanced correlation for gas-particle heat and mass transfer in packed and fluidized bed reactors. Chemical Engineering Journal, 374, 531–544.

Last update:

  1. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters

    Van Ga Bui, Thi Minh Tu Bui, Van Nam Tran, Zuohua Huang, Anh Tuan Hoang, Wieslaw Tarelko, Van Hung Bui, Xuan Mai Pham, Phuoc Quy Phong Nguyen. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.09.133
  2. Concept of twining injector system for spark-ignition engine fueled with syngas-biogas-hydrogen operating in solar-biomass hybrid energy system

    Van Ga Bui, Thi Minh Tu Bui, Van Giao Nguyen, Van Nam Tran, Le Bich Tram Truong, Le Hoang Phu Pham. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.11.076
  3. Plastic waste/chickpea straw-to-fuels and power through co-gasification in a novel zero-emission system by CO2 capturing and utilization

    Parisa Mojaver, Shahram Khalilarya, Ata Chitsaz, Samad Jafarmadar. Fuel, 348 , 2023. doi: 10.1016/j.fuel.2023.128490
  4. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier

    Thanh Xuan Nguyen-Thi, Thi Minh Tu Bui, Van Ga Bui. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.53994
  5. Waste to energy: An experimental study on hydrogen production from food waste gasification

    Ashok Kumar Koshariya, M. Sivaram Krishnan, S. Jaisankar, Ganesh Babu Loganathan, T. Sathish, Ümit Ağbulut, R. Saravanan, Le Thanh Tuan, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.05.221
  6. Ce/Pumice and Ni/Pumice as heterogeneous catalysts for syngas production from biomass gasification

    S. Señorans, J. R-Díaz, D. Escalante, L.A. González, L. Díaz. Waste Management, 166 , 2023. doi: 10.1016/j.wasman.2023.05.017
  7. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.05.049
  8. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges

    Thanh Tuan Le, Prabhakar Sharma, Bhaskor Jyoti Bora, Viet Dung Tran, Thanh Hai Truong, Huu Cuong Le, Phuoc Quy Phong Nguyen. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.08.044

Last update: 2023-10-04 11:47:28

No citation recorded.