skip to main content

Numerical Investigation of a Solar PV/T Air Collector Under the Climatic Conditions of Zarqa, Jordan

1Department of Mechanical Engineering, Faculty of Engineering, The Hashemite University, Zarqa, Jordan

2Department of Mechanical Engineering, Al Hussein Technical University, Amman, Jordan

Received: 19 Mar 2022; Revised: 1 Jun 2022; Accepted: 22 Jun 2022; Available online: 1 Jul 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The use of hybrid photovoltaic/thermal (PV/T) and low concentrating photovoltaic/thermal (LCPV/T) systems can significantly enhance the overall solar energy conversion efficiency by delivering electricity and thermal energy. This paper presents a case study using a standing PV system's theoretical and modeling approach that can be modified to adapt to the hybrid technology. Firstly, a single-pass conventional PV/T air-cooled collector is investigated based on heat transfer and electrical models under the climatic conditions of Zarqa, Jordan. The performance parameters are evaluated using thermal and electrical properties of the considered PV installation and measured meteorological data. Results show that the total energy produced varies between a maximum of 134.6 kWh/m2 in July and a minimum of 81.7 kWh/m2 in January. The annual average hourly variation of overall energy efficiency ranges between 79.2% and 88.4%. Moreover, the dissipated thermal energy can meet 63.6% of the total energy required to ventilate the Hashemite University Presidency Building during the winter months. Finally, the performance of the modeled PV/T system air system coupled with flat boosters to provide a low irradiation concentration ratio (CR) is explored. The maximum electric output of the resulting LCPV/T system is compared with the uncooled system. It is found that the percentage improvement due to air cooling ranges between 0.72% at CR=1 and 2.77% at CR=2.5
Fulltext View|Download
Keywords: PV/T air collector; Low concentration ratio; Numerical simulation; Useful thermal energy; Overall energy efficiency

Article Metrics:

  1. Abdullah, A. L., Misha, S., Tamaldin, N., Rosli, M. A. M., & Sachit, F. A. (2019). Numerical analysis of solar hybrid photovoltaic thermal air collector simulation by ANSYS. CFD Letters, 11(2), 1-11
  2. Abu-Rumman, G., Khdair, A., & Khdair, S. (2020). Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon, 6(2), e03346. DOI: 10.1016/j.heliyon.2020.e03346
  3. Ahmed, A., Shanks, K., Sundaram, S., & Mallick, T. K. (2020). Theoretical investigation of the temperature limits of an actively cooled high concentration photovoltaic system. Energies, 13(8), 1902. DOI: 10.3390/en13081902
  4. Ahmed, O. K., & Bawa, S. M. (2019). The combined effect of nanofluid and reflective mirrors on the performance of photovoltaic/thermal solar collector. Thermal Science, 23(2 Part A), 573-587. DOI: 10.2298/TSCI171203092A
  5. Al-Najideen, M., Al-Shidhani, M., & Min, G. (2019, August). Optimum design of V-trough solar concentrator for photovoltaic applications. In AIP Conference Proceedings (Vol. 2149, No. 1, p. 030001). AIP Publishing LLC. DOI: 10.1063/1.5124178
  6. Alobaid, M., Hughes, B., Calautit, J. K., O’Connor, D., & Heyes, A. (2017). A review of solar driven absorption cooling with photovoltaic thermal systems. Renewable and sustainable energy reviews, 76, 728-742. DOI: 10.1016/j.rser.2017.03.081
  7. Alrwashdeh, S. S. (2018). Comparison among solar panel arrays production with different operating temperatures in Amman-Jordan. International Journal of Mechanical Engineering and Technology, 9(6), 420-429
  8. Alrwashdeh, S., Alsaraireh F., & Saraireh M. (2018). Solar radiation map of Jordan governorates. International Journal of Engineering & Technology, 7(3), 1664-1667. DOI: 10.14419/ijet.v7i3.15557
  9. Amanlou, Y., Hashjin, T. T., Ghobadian, B., & Najafi, E. G. (2018). Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Applied Thermal Engineering, 141, 413-421. DOI: 10.1016/j.applthermaleng.2018.05.070
  10. Amori, K. E., & Abd-AlRaheem, M. A. (2014). Field study of various air based photovoltaic/thermal hybrid solar collectors. Renewable Energy, 63, 402-414. DOI: 10.1016/j.renene.2013.09.047
  11. Annual Report 2018 (2019). National Electric Power Company (NEPCO). Amman, Jordan
  12. Bandaru, S. H., Becerra, V., Khanna, S., Radulovic, J., Hutchinson, D., & Khusainov, R. (2021). A Review of Photovoltaic Thermal (PVT) technology for residential applications: performance indicators, progress, and opportunities. Energies, 14(13), 3853. DOI: 10.3390/en14133853
  13. Baynouna Solar Energy Project-Factsheet (2020). Masdar Company
  14. Bayrakci, M., Choi, Y., & Brownson, J. R. (2014). Temperature dependent power modeling of photovoltaics. Energy Procedia, 57, 745-754. DOI: 10.1016/j.egypro.2014.10.282
  15. Choi, H. U., & Choi, K. H. (2020). Performance evaluation of PV/T air collector having a single-pass double-flow air channel and non-uniform cross-section transverse rib. Energies, 13(9), 2203. DOI: 10.3390/en13092203
  16. Daneshazarian, R., Cuce, E., Cuce, P. M., & Sher, F. (2018). Concentrating photovoltaic thermal (CPVT) collectors and systems: Theory, performance assessment and applications. Renewable and Sustainable Energy Reviews, 81, 473-492. DOI: 10.1016/j.rser.2017.08.013
  17. Das B, Rezaie B, Jha P, Gupta R. (2018). Performance Analysis of Single Glazed Solar PVT Air Collector in the Climatic Condition of NE India. Proceedings. 2(4), 171. DOI: 10.3390/ecea-4-05021
  18. Diwania, S., Agrawal, S., Siddiqui, A. S., & Singh, S. (2020). Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement. International Journal of Energy and Environmental Engineering, 11(1), 33-54. DOI: 10.1007/s40095-019-00327-y
  19. Ebaid, M. S., Ghrair, A. M., & Al-Busoul, M. (2018). Experimental investigation of cooling photovoltaic (PV) panels using (TiO2) nanofluid in water-polyethylene glycol mixture and (Al2O3) nanofluid in water-cetyltrimethylammonium bromide mixture. Energy Conversion and Management, 155, 324-343. DOI: 10.1016/j.enconman.2017.10.074
  20. Energy (2019) Facts and Figures brochure; Ministry of Energy and Mineral Resources. Amman, Jordan
  21. Etier, I., Al Tarabsheh, A., & Ababne, M. (2010). Analysis of solar radiation in Jordan. Jordan J Mech Ind Eng, 4(6), 733-737
  22. Etier, I., Nijmeh, S., Shdiefat, M., & Al-Obaidy, O. (2021). Experimentally evaluating electrical outputs of a PV-T system in Jordan. International Journal of Power Electronics and Drive Systems, 12(1), 421. DOI: 10.11591/ijpeds.v12.i1.pp421-430
  23. Fterich, M., Chouikhi, H., Bentaher, H., & Maalej, A. (2018). Experimental parametric study of a mixed-mode forced convection solar dryer equipped with a PV/T air collector. Solar Energy, 171, 751-760. DOI: 10.1016/j.solener.2018.06.051
  24. Fudholi, A., & Sopian, K. (2018). R&D of Photovoltaic Thermal (PVT) Systems: an overview. International Journal of Power Electronics and Drive Systems, 9(2), 803. DOI: 10.11591/ijpeds.v9.i2.pp803-810
  25. Fudholi, A., Musthafa, M.F., Ridwan, A., Yendra, R., Desvina, A.P., Rahmadeni, R., Suyono, T. and Sopian, K. (2019). Energy and exergy analysis of air based photovoltaic thermal (PVT) collector: a review. International Journal of Electrical and Computer Engineering, 9(1), 109. DOI: 10.11591/ijece.v9i1.pp109-117
  26. Fudholi, A., Zohri, M., Taslim, I., Aliyah, F., & Koto, A. G. (2019). Heat transfer and efficiency of dual channel PVT air collector: a review. International Journal of Power Electronics and Drive Systems, 10(4), 2037. DOI: 10.11591/ijpeds.v10.i4.pp2037-2045
  27. Geng, W. G., Gao, L., Ma, X. X., Ma, X. L., Yu, Z. Y., & Li, X. Y. (2013). Honeysuckle Drying by Using Hybrid ConcentratorPhotovoltaic-Thermal (PV/T) Dryer: An Experimental Study. In Applied Mechanics and Materials (Vol. 291, pp. 132-136). Trans Tech Publications Ltd. DOI: 10.4028/www.scientific.net/AMM.291-294.132
  28. Hachchadi, O., Bououd, M., & Mechaqrane, A. (2018, December). Numerical investigation of a solar PVT air collector used for preheating the ventilating air in tertiary building under the climatic conditions of Fez, Morocco. In AIP Conference Proceedings (Vol. 2056, No. 1, p. 020022). AIP Publishing LLC. DOI: 10.1063/1.5084995
  29. Hosseini, S. E., & Butler, B. (2021). Design and analysis of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production. Journal of Thermal Analysis and Calorimetry, 144(3), 763-778. DOI: 10.1007/s10973-020-09556-4
  30. Hussain, M. I., & Kim, J. T. (2019). Energy and economic potential of a concentrated photovoltaic/thermal (CPV/T) system for buildings in South Korea. Journal of Asian Architecture and Building Engineering, 18(2), 139-144. DOI: 10.1080/13467581.2019.1606718
  31. Idzkowski, A., Karasowska, K., & Walendziuk, W. (2020). Temperature Analysis of the Stand-Alone and Building Integrated Photovoltaic Systems Based on Simulation and Measurement Data. Energies, 13(16), 4274. DOI: 10.3390/en13164274
  32. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2018). Influence of temperature on electrical characteristics of different photovoltaic module technologies. International Journal of Renewable Energy Development, 7(2), 85. DOI: 10.14710/ijred.7.2.85-91
  33. Jordan Renewable Energy & Energy Efficiency Law No. 13, (2012)
  34. Ju, X., Xu, C., Liao, Z., Du, X., Wei, G., Wang, Z., & Yang, Y. (2017). A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Science bulletin, 62(20), 1388-1426. DOI: 10.1016/j.scib.2017.10.002
  35. Kumar, R., & Rosen, M. A. (2011). Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering, 31(8-9), 1402-1410. DOI: 10.1016/j.applthermaleng.2010.12.037
  36. Lamnatou, C., & Chemisana, D. (2017). Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues. Renewable energy, 105, 270-287. DOI: 10.1016/j.renene.2016.12.009
  37. Mansy, E. E., Hetata, A. Y., & Nasr, A. R. (2020). Modeling of water cooled concentrated photovoltaic (CPV) system fed a small campus in Mansoura University–Egypt. MEJ. Mansoura Engineering Journal, 43(1), 7-14. DOI: 10.21608/bfemu.2020.94508
  38. Mojumder, J. C., Chong, W. T., Ong, H. C., & Leong, K. Y. (2016). An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy and Buildings, 130, 272-285. DOI: 10.1016/j.enbuild.2016.08.040
  39. Mustapha, M., Fudholi, A., Yen, C. H., Ruslan, M., & Sopian, K. (2018). Review on energy and exergy analysis of air and water based photovoltaic thermal (PVT) collector. International Journal of Power Electronics and Drive Systems, 9(3), 1367-1373. DOI: 10.11591/ijpeds.v9.i3.pp1367-1373
  40. Nijmeh, S., Hammad, B., Al-Abed, M., & Bani-Khalid, R. (2020). A Technical and Economic Study of a Photovoltaic-phase Change Material (PV-PCM) System in Jordan. Jordan Journal of Mechanical & Industrial Engineering, 14(4), 371-379
  41. Odungat, M. M., Simon, S. P., Kumar, K. A., Sundareswaran, K., Nayak, P. S., & Padhy, N. P. (2020). Estimation of system efficiency and utilisation factor of a mirror integrated solar PV system. IET Renewable Power Generation, 14(10), 1677-1687. DOI: 10.1049/iet-rpg.2019.0804
  42. Okorieimoh, C. C., Norton, B., & Conlon, M. (2020). Long-Term durability of solar photovoltaic modules. Sustainable Ecological Engineering Design, 317-325. DOI: 10.1007/978-3-030-44381-8_24
  43. Rajput, P., Tiwari, G. N., Sastry, O. S., Bora, B., & Sharma, V. (2016). Degradation of mono-crystalline photovoltaic modules after 22 years of outdoor exposure in the composite climate of India. Solar Energy, 135, 786-795. DOI: 10.1016/j.solener.2016.06.047
  44. Rekha, L., Vazhappilly, C. V., & Melvinraj, C. R. (2016). Numerical simulation for solar hybrid photovoltaic thermal air collector. Procedia Technology, 24, 513-522. DOI: 10.1016/j.protcy.2016.05.088
  45. Rizk, J., & Nagarial, M. H. (2009). Impact of reflectors on solar energy systems. International Journal of Electrical and Electronics Engineering, 3-9. DOI: 10.5281/zenodo.1057845
  46. Rukman, N., Fudholi, A., Taslim, I., Indrianti, M., Manyoe, I., Lestari, U., & Sopian, K. (2019). Electrical and thermal efficiency of air-based photovoltaic thermal (PVT) systems: An overview. Indonesian Journal of Electrical Engineering and Computer Science, 14(3). DOI: 10.11591/ijeecs.v14.i3.pp1134-1140
  47. Sarhaddi, F., Farahat, S., Ajam, H., & Behzadmehr, A. (2010). Exergetic performance assessment of a solar photovoltaic thermal (PV/T) air collector. Energy and Buildings, 42(11), 2184-2199. DOI: 10.1016/j.enbuild.2010.07.011
  48. Sarhaddi, F., Farahat, S., Ajam, H., Behzadmehr, A. M. I. N., & Adeli, M. M. (2010). An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied energy, 87(7),2328-2339. DOI: 10.1016/j.apenergy.2010.01.001
  49. Schwingshackl, C., Petitta, M., Wagner, J. E., Belluardo, G., Moser, D., Castelli, M., ... & Tetzlaff, A. (2013). Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia, 40, 77-86. DOI: 10.1016/j.egypro.2013.08.010
  50. Shanks, K., Senthilarasu, S., & Mallick, T. K. (2016). Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews, 60, 394-407. DOI: 10.1016/j.rser.2016.01.089
  51. Slimani, M. E. A., Amirat, M., Kurucz, I., Bahria, S., Hamidat, A., & Chaouch, W. B. (2017). A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy conversion and management, 133, 458-476. DOI: 10.1016/j.enconman.2016.10.066
  52. Suntech. STP285-24/Vd.(2011). Polycrystalline Solar Module. EN-STD-Vd-NO1.01-Rev 2011 ed. China
  53. Tiwari, A., & Sodha, M. S. (2007). Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model. Solar Energy Materials and Solar Cells, 91(1), 17-28. DOI: 10.1016/j.solmat.2006.06.061
  54. Tiwari, S., Agrawal, S., & Tiwari, G. N. (2018). PVT air collector integrated greenhouse dryers. Renewable and Sustainable Energy Reviews, 90, 142-159. DOI: 10.1016/j.rser.2018.03.043
  55. Umoette, A. T., Ubom, E. A., & Akpan, I. E. (2016). Comparative Analysis of Three NOCT-Based Cell Temperature Models. Int. J. Syst. Sci. Appl. Math, 1(4), 69. DOI: 10.11648/j.ijssam.20160104.16

Last update:

  1. Integrating Solar Heaters with Building Energy Systems : A Simulation Study

    Dr. Vipul M Goti. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2023. doi: 10.32628/CSEIT2390564
  2. Experimental investigation thermal and exergy efficiency of photovoltaic/thermal system

    Ammar Alkhalidi, Tareq Salameh, Ahmed Al Makky. Renewable Energy, 222 , 2024. doi: 10.1016/j.renene.2023.119897
  3. Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman

    Afzal Husain, Nabeel Z. Al-Rawahi, Nasser A. Al-Azri, Mohammed Al-Naabi, Musaab El-Tahir. International Journal of Renewable Energy Development, 12 (5), 2023. doi: 10.14710/ijred.2023.53287

Last update: 2024-12-25 20:58:17

No citation recorded.