skip to main content

Performance Evaluation of An Electrolyte-Supported Intermediate-Temperature Solid Oxide Fuel Cell (IT-SOFC) with Low-Cost Materials

1Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia

2Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia

3Center for Hydrogen-Fuel Cell Research, Korea Institute of Science and Technology (KIST), 5, Hwarangro 14-gil, Seongbuk-gu, Seoul, South Korea

4 Department of New Investment, PT Rekayasa Industri, Jl. Kalibata Timur I No. 36, Jakarta 12740, Indonesia

View all affiliations
Received: 17 May 2022; Revised: 8 Jul 2022; Accepted: 15 Jul 2022; Available online: 21 Jul 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Intermediate temperature solid oxide fuel cell (IT-SOFC) provides economic and technical advantages over the conventional SOFC because of the wider material use, lower fabrication cost and longer lifetime of the cell components. In this work, we fabricated electrolyte-supported IT-SOFC using low-cost materials such as calcia-stabilized zirconia (CSZ) electrolyte fabricated by dry-pressing, NiO-CSZ anode and Ca3Co1.9Zn0.1O6 (CCZO) cathode produced through brush coating technique. According to the XRD result, the monoclinic phase dominated over the cubic phase, and the relative density of the electrolyte was low but the hardness of the CSZ electrolyte was close to the hardness of commercial 8YSZ electrolyte. The performance of the single cell was performed with hydrogen ambient air. An open-circuit voltage (OCV) of 0.43, 0.46, and 0.45 V and a maximum power density of 0.14, 0.50, and 1.00 mW/cm2 were achieved at the operating temperature of 600, 700, and 800 °C, respectively. The ohmic resistance of the cell at 700 and 800 °C achieved 81.5 and 33.00 Ω, respectively due to the contribution of thick electrolyte and Cr poisoning in electrodes and electrolyte
Fulltext View|Download
Keywords: IT-SOFC; calcia-stabilized zirconia; electrolyte-supported; operating temperature; single cell
Funding: International R&D Academy of Korean Institute of Science and Technology (KIST) under contract 19-7887

Article Metrics:

  1. Abdalla A.M., Hossain, S., Azad A.T., Petra, P.M.I., Begum, F., Eriksson, S.G. & Azad, A.K. (2018) Nanomaterials for solid oxide fuel cells: A review. Renewable & Sustainable Energy Reviews, 82, pp. 353–368; doi: 10.1016/j.rser.2017.09.046
  2. Changlian, C., Qiang, S., Junguo, L. & Lianmeng, Z. (2009) Sintering and phase transformation of 7wt% calcia-stabilized zirconia ceramics. Journal of Wuhan University Technology-Mater. Sci. Ed, 24, 304–307. doi: 10.1007/s11595-009-2304-0
  3. Chelmehsara, M.E. & Mahmoudimehr, J. (2018) Techno-economic comparison of anode-supported, cathode-supported, and electrolyte-supported SOFCs. International Journal of Hydrogen Energy, 43(32), 15521-15530. doi: 10.1016/j.ijhydene.2018.06.114
  4. Chen, Y., Yang, L., Ren, F. & An, K. (2014) Visualizing the structural evolution of LSM/xYSZ composite cathodes for SOFC by in-situ neutron diffraction. Scientific Reports, 1-9. doi: 10.1038/srep05179
  5. Chourashiya, M.G., Patil, J.Y., Pawar, S.H. & Jadhav, L.D. (2008). Studies on structural, morphological and electrical properties of Ce1−xGdxO2−(x/2). Materials Chemistry and Physics, 109, 39-44. doi: 10.1016/j.matchemphys.2007.10.028
  6. Dudek, M., Mosiałek, M., Mordarski, G., Socha, R. & Rapacz-Kmita, A.. (2011) Ionic Conductivity of the CeO2-Gd2O3-SrO System. Archives of Metallurgy and Materials, 56, 2874–2889. doi: 10.2478/v10172-011-0143-4
  7. Durrani, S.K., Akhtar, J., Ahmad, M. & Hussain, M.A. (2006) Synthesis and characterization of low density calcia stabilized zirconia ceramic for high temperature furnace application. Materials Chemistry and Physic, 100, 324–328. doi: 10.1016/j.matchemphys.2006.01.010
  8. Etsell, T. & Flengas, S. (1969) The electrical properties of solid oxide electrolytes. Chemical Reviews, 70, 339–376. doi: 10.1021/cr60265a003
  9. Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T. & Kuebler J. (2015) Strength of an electrolyte supported solid oxide fuel cell. Journal of Power Sources, 297, 158–167. doi: 10.1016/j.jpowsour.2015.07.075
  10. Fragiacomo, P., De Lorenzo, G. & Corigliano, O. (2020) Intermediate temperature solid oxide fuel cell/electrolyzer towards future large-scale production. Procedia Manufacturing, 42, 259-266. doi: 10.1016/j.promfg.2020.02.082
  11. Fray, D.J. (1996) The use of solid electrolytes as sensors for applications in molten metals. Solid State Ionics, 86–88, 1045–1054. doi: 10.1016/0167-2738(96)00249-4
  12. Hermawan, E., Lee, G.S., Kim, G.S., Ham H.C., Han, J. & Yoon S.P. (2017) Densification of an YSZ electrolyte layer prepared by chemical/electrochemical vapor deposition for metal-supported solid oxide fuel cells, Ceramics International, 43,10450–10459. doi: 10.1016/j.ceramint.2017.05.085
  13. Irshad, M., Siraj, K., Raza, R., Ali, A., Tiwari, P., Zhu, B., Rafique, A., Ali, A., Ullah, M.K. & Usman, A. (2016) A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 6(3), 1-23. doi: 10.3390/app6030075
  14. Jiang, S.P. & Chen, X. (2014) Chromium deposition and poisoning of cathodes of solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 39, 505-531. doi: 10.1016/j.ijhydene.2013.10.042
  15. Kim, G.S., Lee, B.Y., Accardo, G., Ham, H.C., Moon, J. & Yoon, S.P. (2019) Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst. Journal of Power Sources, 423, pp. 305–315. doi: 10.1016/j.jpowsour.2019.03.082
  16. Kindermann, L., Das, D., Nickel, H. & Hilpert, K. (1996) Chemical compatibility of the LaFeO3 base perovskites (La0.6Sr0.4)zFe0.8M0.2O3−δ (z = 1, 0.9; M = Cr, Mn, Co, Ni) with yttria stabilized zirconia. Solid State Ionics, 89, 215–220. doi: 10.1016/0167-2738(96)00366-9
  17. Kurapova, O.Y., Glumov, O.V., Pivovarov, M.M &, Golubev, S.N. (2017) Structure and Conductivity of Calcia Stabilized Zirconia Ceramics, Manufactured from Freeze-Dried Nanopowder. Reviews on Advanced Materials Science, 52, 134–141. doi: 10.1515/rams-2018-0071
  18. Leonide, A., Sonn, V., Weber, A. & Ivers-Tiffée, E. (2007) Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells. Journal of Electrochemical Society, 155, 36-41. doi: 10.1149/1.2801372
  19. Li, Y., Wang, S. & Su, P. (2016) Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer. Scientific Reports, 6, 1–9. doi: 10.1038/srep22369
  20. Merino, R.I., Pena, J.I., Laguna-Bercero, M.A., Larrea, A. & Orera, V.M. (2004) Directionally solidified calcia stabilized zirconia-nickel oxide plates in anode supported solid oxide fuel cells. Journal of the European Ceramic Society, 24, pp. 1349-1353. doi: 10.1016/S0955-2219(03)00562-4
  21. Molin, S., Gazda, M. & Jasinski, P. (2009) Interaction of yttria stabilized zirconia electrolyte with Fe2O3 and Cr2O3. Journal of Power Sources, 194, 20-24. doi: 10.1016/j.jpowsour.2009.01.03
  22. Muccillo, R., Netto, R.C. & Muccillo, E.N. (2001) Synthesis and characterization of calcia fully stabilized zirconia solid electrolytes. Material Letters, 49, 197–201. doi: 10.1016/S0167-577X(00)00367-0
  23. Orui, H., Nozawa, K., Arai, H. & Kanno, R. (2015) Influence of reduction conditions on electrical properties of NiO-Zirconia composites for solid oxide fuel cell electrode. Journal of Power Sources, 288, 419-425. doi: 10.1016/j.jpowsour.2015.04.139
  24. Park, J.M., Kim, D.Y., Baek, J.D., Yoon, Y.J., Su, P.C. & Lee, S.H. (2018) Effect of electrolyte thickness on electrochemical reactions and thermo-fluidic characteristics inside a SOFC unit cell. Energies, 11(473), 1-25. doi: 10.3390/en11030473
  25. Paydar, S., Shariat, M.H. & Javadpour, S. (2016) Investigation on electrical conductivity of LSM/YSZ8, LSM/Ce0.84Y0.16O0.96 and LSM/Ce0.42Zr0.42Y0.16O0.96 composite cathodes of SOFCs. International Journal of Hydrogen Energy, 41, 23145-23155. doi: 10.1016/j.ijhydene.2016.10.092
  26. Pusz, J., Smirnova, A., Mohammadi, A. & Sammes, N.M. (2007) Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments. Journal of Power Sources, 163, 900–906. doi: 10.1016/j.jpowsour.2006.09.074
  27. Rasmussen, J.F.B., Hendriksen, P.V. & Hagen, A. (2008) Study of Internal and External Leaks in Tests of Anode-Supported SOFCs. Fuel Cells, 8, 385–393. doi: 10.1002/fuce.200800019
  28. Saebea, D., Authayanun, S., Patcharavorachot, Y., Chatrattanawet, N. & Arpornwichanop, A. (2018) Electrochemical performance assessment of lowtemperature solid oxide fuel cell with YSZ-based and SDC-based electrolytes. International Journal of Hydrogen Energy, 43, 921-931. doi: 10.1016/j.ijhydene.2017.09.173
  29. Shi, H., Su, C., Ran, R., Cao, J. & Shao, Z. (2020) Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science: Materials International, 30, 764-774. doi: 10.1016/j.pnsc.2020.09.003
  30. Singhal, S.C. & Kendall, K. (2003) High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Oxford: Elsevier Ltd
  31. Subbarao, E. & Maiti, H. (1984) Solid Electrolyte with Oxygen Ion Conduction. Solid State Ionics, 11, 317–338. doi: 10.1016/0167-2738(84)90024-9
  32. Takami, T. & Ikuta, H. (2005) Thermoelectric properties of one-dimensional cobalt oxide Ca3Co2O6 and the effect of Zn doping, 24th International Conference on Thermoelectrics, 480-483. doi: 10.1109/ICT.2005.1519990
  33. Timurkutluk, B., Timurkutluk, C., Mat, M.D. & Kaplan, Y. (2016) A review on cell/stack designs for high performance solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 56, 1101–1121. doi: 10.1016/j.rser.2015.12.034
  34. Tiwari, P. & Basu, S. (2014) Performance studies of electrolyte-supported solid oxide fuel cell with Ni-YSZ and Ni-TiO2-YSZ as anodes. Journal of Solid State Electrochemistry, 18, 805–812. doi: 10.1007/s10008-013-2326-6
  35. Toraya, H., Yoshimura, M. & Somiya, S. (1984) Quantitative Analysis of Monoclinic‐Stabilized Cubic ZrO2 Systems by X‐Ray Diffraction. Journal of the American Ceramic Society, 67, 183-184. doi: 10.1111/j.1151-2916.1984.tb19614.x
  36. U.S. Geological Survey. (2019) Mineral commodity summaries 2019, U.S. Geological Survey, Virginia, Feb. 2019
  37. Wei, T., Huang, Y.H., Zeng, R., Yuan, L.X., Hu, X.L, Zhang WX., Jiang, L., Yang, J.Y. & Zhang, Z.L. (2013) Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell. Scientific Reports, 3, 1–6. doi: 10.1038/srep01125
  38. Widiatmoko, P., Devianto, H., Nurdin, I., Yusupandi, F., Kevino. & Ovani, E.N. (2019) Fabrication and characterization of intermediate-temperature solid oxide fuel cell (IT-SOFC) single cell using Indonesia’s resources. IOP Conference Series: Material Science and Engineering, 550. doi: 10.1088/1757-899X/550/1/012001
  39. Yoshito, W.K., Matos, J.R., Ussui, V., Lazar, D.R.R. & Paschoal, J.O.A. (2009) Reduction kinetics of NiO-YSZ composite for application in solid oxide fuel cell. Journal of Thermal Analysis and Calorimetry, 97, 303–308. doi: 10.1007/s10973-009-0237-7
  40. Yu, S., He, S., Chen, H. & Guo, L. (2015) Effect of calcination temperature on oxidation state of cobalt in calcium cobaltite and relevant performance as intermediate- temperature solid oxide fuel cell cathodes. Journal of Power Sources, 280, 581–587. doi: 10.1016/j.jpowsour.2015.01.150
  41. Yu, S., Zhang, G., Chen, H. & Guo, L. (2017) A novel post-treatment to calcium cobaltite cathode for solid oxide fuel cells. International Journal of Hydrogen Energy, 43, 2436-2442. doi: 10.1016/j.ijhydene.2017.12.040
  42. Zhang, K., Kleit, A.N. & Nieto, A. (2017) An economics strategy for criticality – Application to rare earth element yttrium in new lighting technology and its sustainable availability. Renewable & Sustainable Energy Reviews, 77, 899-915. doi: 10.1016/j.rser.2016.12.127
  43. Zhou, L., Mason, J.H., Li, W. & Liu, X. (2020) Comprehensive review of chromium deposition and poisoning of solid oxide fuel cells (SOFCs) cathode materials. Renewable & Sustainable Energy Reviews, 134, 110320-110343. doi: 10.1016/j.rser.2020.110320
  44. Zhou, M. & Ahmad, A. (2006) Synthesis, processing and characterization of calcia-stabilized zirconia solid electrolytes for oxygen sensing applications. Materials Research Bulletin, 41, 690–696. doi: 10.1016/j.materresbull.2005.10.018

Last update:

  1. Electrochemical Impedance Spectroscopy Study of Ceria- and Zirconia-Based Solid Electrolytes for Application Purposes in Fuel Cells and Gas Sensors

    Małgorzata Dziubaniuk, Robert Piech, Beata Paczosa-Bator. Materials, 17 (21), 2024. doi: 10.3390/ma17215224

Last update: 2024-11-21 19:11:06

No citation recorded.