skip to main content

Effect of a Detached Bi-Partition on the Drag Reduction for Flow Past a Square Cylinder

Laboratory of Mechanics & Energy, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco

Received: 24 Dec 2021; Revised: 29 May 2022; Accepted: 10 Jun 2022; Available online: 26 Jun 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The objective of this research is to study the fluid flow control allowing the reduction of aerodynamic drag around a square cylinder using two parallel partitions placed downstream of the cylinder using the lattice Boltzmann method with multiple relaxation times (MRT-LBM). In contrast to several existing investigations in the literature that study either the effect of position or the effect of length of a single horizontal or vertical plate, this work presents a numerical study on the effect of Reynolds number (Re), horizontal position (g), vertical position (a), and length (Lp) of the two control partitions. Therefore, this work will be considered as an assembly of several results presented in a single work. Indeed, the Reynolds numbers are selected from 20 to 300, the gap spacing (0 ≤ g ≤ 13), the vertical positions (0 ≤ a ≤ 0.8d), and the lengths of partitions (1d ≤  Lp ≤  5d). To identify the different changes appearing in the flow and forces, we have conducted in this study a detailed analysis of velocity contours, lift and drag coefficients, and the root-mean-square value of the lift coefficient. The obtained results revealed three different flow regimes as the gap spacing was varied. Namely, the extended body regime for 0 ≤ g ≤ 3.9, the attachment flow regime for 4 ≤ g ≤ 5.5, and the completely developed flow regime for 6 ≤ g ≤ 13. A maximal percentage reduction in drag coefficient equal to 12.5%, is given at the critical gap spacing (gcr = 3.9). Also, at the length of the critical partition (Lpcr = 3d), a Cd reduction percentage of 12.95% was found in comparison with the case without control. Moreover, the position of the optimal partition was found to be equal to 0.8d i.e. one is placed on the top edge of the square cylinder and the second one is placed on the bottom edge. The maximum value of the lift coefficient is reached for a plate length Lp = 2d when the plates are placed at a distance g = 4. On the other hand, this coefficient has almost the same mean value for all spacings between the two plates. Similarly, the root means the square value of the lift coefficient (Clrms) admits zero values for low Reynolds numbers and then increases slightly until it reaches its maximum for Re = 300.

Fulltext View|Download
Keywords: Lattice Boltzmann method; square cylinder; double partition; gap spacing; vortex shedding; flow control; drag and lift coefficient.

Article Metrics:

  1. Aabid, A., Afifi, A., Mehaboob Ali, F. A. G., Akhtar, M. N., & Khan, S. A. (2019). CFD analysis of splitter plate on bluff body. CFD Letters, 11(11), 25-38
  2. Admi, Y., Lahmer, E. B., Moussaoui, M. A., & Mezrhab, A. (2022). Effect of a Flat Plate on Drag Force Reduction and Heat Transfer Characteristics Around Three Heated Square Obstacles. In Journal of Physics: Conference Series (Vol. 2178, No. 1, p. 012027). IOP Publishing. doi: 10.1088/1742-6596/2178/1/012027
  3. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2020). Effect of a flat plate on heat transfer and flow past a three side-by-side square cylinders using double MRT-lattice Boltzmann method. In 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) (pp. 1-5). IEEE. doi: 10.1109/ICECOCS50124.2020.9314506
  4. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2022). Control of Fluid Flow Coupled on Heat Transfer Around a Square Cylinder by Using Three Attached Partitions. In International Conference on Digital Technologies and Applications (pp. 845-854). Springer, Cham. Doi: 10.1007/978-3-031-01942-5_84
  5. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2021). Effect of Control Partitions on Drag Reduction and Suppression of Vortex Shedding Around a Bluff Body Cylinder. In International Conference on Advanced Technologies for Humanity (pp. 453-463). Springer, Cham. doi: 10.1007/978-3-030-94188-8_40
  6. Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2022). The Vortex Shedding Suppression and Heat Transfer Characteristics Around a Heated Square Cylinder by Using Three Downstream-Detached Partitions. In International Conference on Digital Technologies and Applications (pp. 598-608). Springer, Cham. Doi : 10.1007/978-3-031-02447-4_62
  7. Admi, Y., Moussaoui, A. M. (2022). Numerical Investigation of Convective Heat Transfer and Fluid Flow Past a Three-SquareCylinders Controlled by a Partition in Channel. Int. J. Renew. Energy Dev, 11(3), 766–781
  8. Ali, M. S. M., Doolan, C. J., & Wheatley, V. (2012). Low Reynolds number flow over a square cylinder with a detached flat plate. International Journal of Heat and Fluid Flow, 36, 133-141. doi: 10.1016/j.ijheatfluidflow.2012.03.011
  9. Alonzo-Garcia, A., Cuevas-Martinez, J., Gutiérrez-Torres, C. D. C., Jiménez-Bernal, J. A., Martinez-Delgadillo, S. A., & Medina-Pérez, R. (2021). The control of unsteady forces and wake generated in circular and square cylinder at laminar periodic regime by using different rod geometries. Ocean Engineering, 233, 109121. doi: 10.1016/j.oceaneng.2021.109121
  10. Anderson, E. A., & Szewczyk, A. A. (1997). Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Experiments in Fluids, 23(2), 161-174. doi: 10.1007/s003480050098
  11. Apelt, C. J., & West, G. S. (1975). The effects of wake splitter plates on bluff-body flow in the range 104< R< 5× 104. Part 2. Journal of Fluid Mechanics, 71(1), 145-160. doi: 10.1017/S0022112075002479
  12. Apelt, C. J., West, G. S., & Szewczyk, A. A. (1973). The effects of wake splitter plates on the flow past a circular cylinder in the range 10410.1017/S0022112073000649
  13. Mooneghi, M. A., & Kargarmoakhar, R. (2016). Aerodynamic mitigation and shape optimization of buildings. Journal of building engineering, 6, 225-235. doi: 10.1016/j.jobe.2016.01.009
  14. Bao, Y., & Tao, J. (2013). The passive control of wake flow behind a circular cylinder by parallel dual plates. Journal of Fluids and Structures, 37, 201-219. doi: 10.1016/j.jfluidstructs.2012.11.002
  15. Benhamou, J., Admi, Y., Jami, M., Moussaoui, M. A., & Mezrhab A. (2022). 3D Simulation of Natural Convection in a Cubic Cavity with Several Differentially Heated Walls. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1-7). IEEE doi: 10.1109/iraset52964.2022.9738080
  16. Benhamou, J., & Jami, M. (2022). Three‐dimensional numerical study of heat transfer enhancement by sound waves using mesoscopic and macroscopic approaches. Heat Transfer 51(5), 3892-3919. doi: 10.1002/htj.22482
  17. Benhamou, J., Jami, M., Mezrhab, A., Botton, V., & Henry, D. (2020). Numerical study of natural convection and acoustic waves using the lattice Boltzmann method. Heat Transfer, 49(6), 3779-3796. doi: 10.1002/htj.21800
  18. Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511. doi: 10.1103/PhysRev.94.511
  19. Bouzidi, M. H., Firdaouss, M., & Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of fluids, 13(11), 3452-3459. doi: 10.1063/1.1399290
  20. Breuer, M., Bernsdorf, J., Zeiser, T., & Durst, F. (2000). Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International journal of heat and fluid flow, 21(2), 186-196. doi: 10.1016/S0142-727X(99)00081-8
  21. Bruneau, C. H., Creusé, E., Gilliéron, P., & Mortazavi, I. (2014). A glimpse on passive control using porous media for incompressible aerodynamics. Int. J. Aerodyn, 4(1/2), 70. doi: 10.1504/ijad.2014.057806
  22. Chauhan, M. K., Dutta, S., & Gandhi, B. K. (2019). Wake flow modification behind a square cylinder using control rods. Journal of Wind Engineering and Industrial Aerodynamics, 184, 342-361. doi: 10.1016/j.jweia.2018.12.002
  23. Chiarini, A., & Quadrio, M. (2021). The turbulent flow over the BARC rectangular cylinder: A DNS study. Flow, Turbulence and Combustion, 107(4), 875-899. doi: 10.1007/s10494-021-00254-1
  24. d'Humières, D. (2002). Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1792), 437-451. doi: 10.1098/rsta.2001.0955
  25. Dehkordi, B. G., & Jafari, H. H. (2011). Numerical analysis on the effect of embedding detached short splitter-plates in the downstream of a circular cylinder. Progress in Computational Fluid Dynamics, an International Journal, 11(1), 6-17. doi: 10.1504/PCFD.2011.037568
  26. Ding, L., Mao, X., Yang, L., Yan, B., Wang, J., & Zhang, L. (2021). Effects of installation position of fin-shaped rods on wind-induced vibration and energy harvesting of aeroelastic energy converter. Smart Materials and Structures, 30(2), 025026. doi: 10.1088/1361-665X/abd42b
  27. Doolan, C. J. (2009). Flat-plate interaction with the near wake of a square cylinder. AIAA journal, 47(2), 475-479. doi: 10.2514/1.40503
  28. Fatahian, E., Nichkoohi, A. L., & Fatahian, H. (2019). Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over Naca 2415 airfoil. Progress in Computational Fluid Dynamics, an International Journal, 19(3), 170-179. doi: 10.1504/pcfd.2019.099598
  29. Feng, Z. G., & Michaelides, E. E. (2001). Drag coefficients of viscous spheres at intermediate and high Reynolds numbers. J. Fluids Eng., 123(4), 841-849. doi: 10.1115/1.1412458
  30. Frisch, U., Hasslacher, B., & Pomeau, Y. (2019). Lattice-gas automata for the Navier-Stokes equation. In Lattice Gas Methods for Partial Differential Equations (pp. 11-18). CRC Press. doi: 10.1103/PhysRevLett.56.1505
  31. Gilliéron, P. (2002). Flow control applied to the car. State of the art. Mcanique & Industries, 3(6), 515–524. doi: 10.1016/S1296-2139(02)01197-1
  32. Gupta, A., & Saha, A. K. (2019). Suppression of vortex shedding in flow around a square cylinder using control cylinder. European Journal of Mechanics, B/Fluids, 76, 276–291. doi: 10.1016/j.euromechflu.2019.03.006
  33. Saraei, S. H., Chamkha, A., & Dadvand, A. (2021). Controlling the hydrodynamic forces on a square cylinder in a channel via an upstream porous plate. Mathematics and Computers in Simulation, 185, 272-288. doi: 10.1016/j.matcom.2020.12.017
  34. Islam, S. Ul, Rahman, H., Abbasi, W. S., & Shahina, T. (2015). Lattice Boltzmann Study of Wake Structure and Force Statistics for Various Gap Spacings Between a Square Cylinder with a Detached Flat Plate. Arabian Journal for Science and Engineering, 40(8), 2169–2182. doi: 10.1007/s13369-015-1648-3
  35. Islam, S. U., Manzoor, R., Islam, Z. U., Kalsoom, S., & Ying, Z. C. (2017). A computational study of drag reduction and vortex shedding suppression of flow past a square cylinder in presence of small control cylinders. AIP Advances, 7(4), 045119. doi: 10.1063/1.4982696
  36. Islam, S. U., Rahman, H., Abbasi, W. S., Noreen, U., & Khan, A. (2014). Suppression of fluid force on flow past a square cylinder with a detached flat plate at low Reynolds number for various spacing ratios. Journal of Mechanical science and Technology, 28(12), 4969-4978. doi: 10.1007/s12206-014-1118-y
  37. Lahmer, E. B., Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2022). Improvement of the heat transfer quality by air cooling of three‐heated obstacles in a horizontal channel using the lattice Boltzmann method. Heat Transfer, 51(5), 3869-3891. doi: 10.1002/htj.22481
  38. Lahmer, E. B., Benhamou, J., Admi, Y., moussaoui, mohammed amine, Jami, M., Mezrhab, A., & Phanden, R. K. (2022). Convective and Conjugate Heat Transfer Efficiency Enhancement over Partitioned Channel within Backward-Facing Step using the Lattice Boltzmann Method LBM-DMRT. Journal of Enhanced Heat Transfer, 29(3), 51–77. doi: 10.1615/jenhheattransf.2022040357
  39. Lallemand, P., & Luo, L. S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical review E, 61(6), 6546. doi: 10.1103/PhysRevE.61.6546
  40. Li, D., Wu, Y., Da Ronch, A., & Xiang, J. (2016). Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Progress in Aerospace Sciences, 86, 28-62. doi: 10.1016/j.paerosci.2016.08.001
  41. Liu, K., Deng, J., & Mei, M. (2016). Experimental study on the confined flow over a circular cylinder with a splitter plate. Flow Measurement and Instrumentation, 51, 95-104. doi: 10.1016/j.flowmeasinst.2016.09.002
  42. Loh, S. K., Faris, W. F., & Hamdi, M. (2013). Fluid-structure interaction simulation of transient turbulent flow in a curved tube with fixed supports using LES. Progress in Computational Fluid Dynamics, an International Journal, 13(1), 11-19. doi: 10.1504/PCFD.2013.050646
  43. Maruai, N. M., Mat Ali, M. S., Ismail, M. H., & Shaikh Salim, S. A. Z. (2018). Downstream flat plate as the flow-induced vibration enhancer for energy harvesting. Journal of Vibration and Control, 24(16), 3555-3568. doi: 10.1177/1077546317707877
  44. Mat Ali, M. S., Doolan, C. J., & Wheatley, V. (2011). Low Reynolds number flow over a square cylinder with a splitter plate. Physics of Fluids, 23(3), 033602. doi: 10.1063/1.3563619
  45. Mezrhab, A., Moussaoui, M. A., Jami, M., Naji, H., & Bouzidi, M. H. (2010). Double MRT thermal lattice Boltzmann method for simulating convective flows. Physics Letters A, 374(34), 3499-3507. doi: 10.1016/j.physleta.2010.06.059
  46. Mohamad, A. A. (2011). Fundamentals and engineering applications with computer codes. Springer
  47. Moussaoui, M. A., Admi, Y., Lahmer, E. B., & Mezrhab, A. (2021, February). Numerical investigation of convective heat transfer in fluid flow past a tandem of triangular and square cylinders in channel. In IOP Conference Series: Materials Science and Engineering (Vol. 1091, No. 1, p. 012058). IOP Publishing. doi: 10.1088/1757-899x/1091/1/012058
  48. Moussaoui, M. A., Jami, M., Mezrhab, A., Naji, H., & Bouzidi, M. (2010). Multiple‐relaxation‐time lattice Boltzmann computation of channel flow past a square cylinder with an upstream control bi‐partition. International journal for numerical methods in fluids, 64(6), 591-608. doi: 10.1002/fld.2159
  49. Moussaoui, M. A., Jami, M., Mezrhab, A., Naji, H., & Bouzidi, M. (2010). Multiple‐relaxation‐time lattice Boltzmann computation of channel flow past a square cylinder with an upstream control bi‐partition. International journal for numerical methods in fluids, 64(6), 591-608. doi: 10.1109/WITS.2019.8723863
  50. Moussaoui, M. A., Mezrhab, A., & Naji, H. (2011). A computation of flow and heat transfer past three heated cylinders in a vee shape by a double distribution MRT thermal lattice Boltzmann model. International journal of thermal sciences, 50(8), 1532-1542. doi: 10.1016/j.ijthermalsci.2011.03.011
  51. Nidhul, K., Sunil, A. S., & Kishore, V. (2015). Numerical Investigation of Flow Characteristics over a Square Cylinder with a Detached Flat Plate of Varying Thickness at Critical Gap Distance in the wake at Low Reynolds Number. International Journal of Research in Aeronautical and Mechanical Engineering, 3(1), 104–118
  52. Okajima, A. (1982). Strouhal numbers of rectangular cylinders. Journal of Fluid mechanics, 123, 379-398
  53. Ozono, S. (1999). Flow control of vortex shedding by a short splitter plate asymmetrically arranged downstream of a cylinder. Physics of Fluids, 11(10), 2928-2934. doi: 10.1063/1.870151
  54. Park, Y. G., Yoon, H. S., & Ha, M. Y. (2013). Numerical study on the laminar fluid flow characteristics around a rectangular cylinder with different width to height ratios. Progress in Computational Fluid Dynamics, an International Journal, 13(3-4), 244-262. doi: 10.1504/PCFD.2013.053670
  55. Qian, Y. H., d'Humières, D., & Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479. doi: 10.1209/0295-5075/17/6/001
  56. Rashidi, S., Hayatdavoodi, M., & Esfahani, J. A. (2016). Vortex shedding suppression and wake control: A review. Ocean Engineering, 126, 57-80. doi: 10.1016/j.oceaneng.2016.08.031
  57. Roshko, A. (1954). On the drag and shedding frequency of two-dimensional bluff bodies (No. NACA-TN-3169)
  58. Saha, A. K., Biswas, G., & Muralidhar, K. (2003). Three-dimensional study of flow past a square cylinder at low Reynolds numbers. International Journal of Heat and Fluid Flow, 24(1), 54-66. doi: 10.1016/S0142-727X(02)00208-4
  59. Sakamoto, H., Tan, K., Takeuchi, N., & Haniu, H. (1997). Suppression of fluid forces acting on a square prism by passive control. Journal of Fluids Engineering, Transactions of the ASME, 119(3): 506-511. doi: 10.1115/1.2819273
  60. Sohankar, A., Norberg, C., & Davidson, L. (1999). Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers. Physics of fluids, 11(2), 288-306
  61. Turki, S. (2008). Numerical simulation of passive control on vortex shedding behind square cylinder using splitter plate. Engineering Applications of Computational Fluid Mechanics, 2(4), 514-524. doi: 10.1080/19942060.2008.11015248
  62. Vamsee, G. R., De Tena, M. L., & Tiwari, S. (2014). Effect of arrangement of inline splitter plate on flow past square cylinder. Progress in Computational Fluid Dynamics, an International Journal, 14(5), 277-294. doi: 10.1504/PCFD.2014.064554
  63. You, D., Choi, H., Choi, M. R., & Kang, S. H. (1998). Control of flow-induced noise behind a circular cylinder using splitter plates. AIAA journal, 36(11), 1961-1967. doi: 10.2514/2.322
  64. Yu, Z., Ping, H., Liu, X., Zhu, H., Wang, R., Bao, Y., ... & Xu, H. (2020). Turbulent wake suppression of circular cylinder flow by two small counter-rotating rods. Physics of Fluids, 32(11), 115123. doi: 10.1063/5.0023881
  65. Zhong, W., Yim, S. C., & Deng, L. (2020). Vortex shedding patterns past a rectangular cylinder near a free surface. Ocean Engineering, 200, 107049. doi: 10.1016/j.oceaneng.2020.107049
  66. Zhou, L., Cheng, M., & Hung, K. C. (2005). Suppression of fluid force on a square cylinder by flow control. Journal of Fluids and Structures, 21(2), 151-167. doi: 10.1016/j.jfluidstructs.2005.07.002
  67. Zhu, H., & Liu, W. (2020). Flow control and vibration response of a circular cylinder attached with a wavy plate. Ocean Engineering, 212, 107537. doi: 10.1016/j.oceaneng.2020.107537
  68. Zou, Q., & He, X. (1997). On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 9(6), 1591-1598. doi: 10.1063/1.869307

Last update:

No citation recorded.

Last update:

No citation recorded.