skip to main content

Statistical Analysis on The Near-Wake Region of RANS Turbulence Closure Models for Vertical Axis Tidal Turbine

1Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia

2Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia

3Institute of Engineering Mathematics, Universiti Malaysia Perlis (UniMAP), Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia

4 Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia

View all affiliations
Received: 18 Aug 2022; Revised: 6 Oct 2022; Accepted: 30 Oct 2022; Available online: 11 Nov 2022; Published: 1 Jan 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The flow field in the near wake region (up to six turbine diameters downstream) of a tidal current turbine is strongly driven by the combined wake of the device support structure and the rotor. Accurate characterisation of the near-wake region is important, but it is dominated by highly turbulent, slow-moving fluid. At present, limited number of research has been undertaken into the characterisation of the near-wake region for a Vertical Axis Tidal Turbine (VATT) device using the Reynolds Averaged Navier Stokes (RANS) model in the shallow water environment of Malaysia. This paper presents a comprehensive statistical analysis using the Mean Absolute Error (MEA), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) on the near-wake region for shallow water application by comparing numerical solutions (i.e., different types of RANS turbulence models using Ansys Fluent) with published experimental data. Seven RANS turbulence models with a single VATT, represented by using a cylindrical object, were employed in the preliminary study. The statistical analysis performed in this study is essential in exploring and giving a detailed understanding on the most suitable RANS turbulence model to be improved, specifically on its near-wake region. In this study, the near wake region is defined as D ≤ 6, where D is the device diameter. The analysis shows that the RANS numerical solutions are unable to accurately replicate the near-wake region based on large statistical errors computed. The average RMSE of near-wake region at z/D = [2, 3, 4, 6] are 0.5864, 0.4127, 0.4344 and 0.3577 while the average RMSE at far-wake region z/D = [8, 12] are 0.2269 and 0.1590, where z is the distance from the cylindrical object along the length of domain. The statistical error values are found to decrease with increasing downstream distance from a cylindrical object. Notably, the standard k–ε and realizable k–ε models are the two best turbulent models representing the near-wake region in RANS modelling, yielding the lowest statistical errors (RMSE at z/D = [2, 3, 4, 6] are 0.5666, 0.4020, 0.4113 and 0.3455) among the tested parameters
Fulltext View|Download
Keywords: Near-wake recovery; Grid sensitivity study; Malaysian marine energy; Error analysis; Velocity profile
Funding: The Ministry of Higher Education Malaysia under contract RACER/1/2019/TK07/UNIMAP/1

Article Metrics:

  1. Abdul Rahman, A. (2018). Numerical modelling of full scale tidal turbines using the actuator disc approach. Proceedings of the 3rd Asian Wave and Tidal Energy Conference (AWTEC2016), Singapore - Vol 1, 172–180
  2. Abdullah, C., Mad Kaidi, H., Sarip, S., & Shafie, N. (2021). Small scale standalone solar and tidal hybrid power system in isolated area. Renewable Energy Focus, 39(00), 59–71. https://doi.org/10.1016/j.ref.2021.07.010
  3. Afgan, I., McNaughton, J., Rolfo, S., Apsley, D. D., Stallard, T., & Stansby, P. (2013). Turbulent flow and loading on a tidal stream turbine by LES and RANS. International Journal of Heat and Fluid Flow, 43, 96–108. https://doi.org/10.1016/j.ijheatfluidflow.2013.03.010
  4. ANSYS. (2011). ANSYS CFD-Solver Theory Guide. Release 14.0. 15317(November), 724–746. http://www1.ansys.com/customer/content/documentation/140/cfx_thry.pdf
  5. ANSYS. (2014). ANSYS - Turbulence Modelling and the Law of the Wall: Tutorial. ANSYS User Manual, 1–48
  6. ANSYS. (2006). ANSYS CFX-Solver Theory Guide. Release 11.0 (December), www.ansys.com/academic/learning-resources
  7. Bakri, A. (2020). Numerical Assessment of Vertical Axis Marine Current Turbines Performances in Shallow Water : A Case Study for Malaysia. Universiti Malaysia Perlis
  8. Batten, W. M. J., Harrison, M. E., & Bahaj, A. S. (2013). Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1985). https://doi.org/10.1098/rsta.2012.0293
  9. Behrouzi, F., Maimun, A., Nakisa, M., Hanafi, M., & Jaswar. (2014). An innovative vertical axis current turbine design for low current speed. Jurnal Teknologi (Sciences and Engineering), 66(2), 177–182. https://doi.org/10.11113/jt.v66.2515
  10. Blackmore, T., Batten, W. M. J., Harrison, M. E., & Bahaj, A. S. (2011). The Sensitivity of Actuator-Disc RANS Simulations to Turbulence Length Scale Assumptions. Conference: 9th European Wave and Tidal Energy Conference, SouthamptonAt: Southampton, UK
  11. Bonar, P. A. J., Schnabl, A. M., Lee, W. K., & Adcock, T. A. A. (2018). Assessment of the Malaysian tidal stream energy resource using an upper bound approach. Journal of Ocean Engineering and Marine Energy, 4(2), 99–109. https://doi.org/10.1007/s40722-018-0110-5
  12. Cetina-Quiñones, A. J., López López, J., Ricalde-Cab, L., El Mekaoui, A., San-Pedro, L., & Bassam, A. (2021). Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities: Relative humidity comparative study under winter season in tropical climate with sensible heat storage material. Solar Energy, 224(May), 58–75. https://doi.org/10.1016/j.solener.2021.05.040
  13. Ching, H. O. E. B. (2019). The Influence of Tidal Turbine In Array Configuration on The Wakw Formation For Shallow Water. In School of Mechatronic Engineering (Issue 161110607)
  14. Clary, V., Oudart, T., Larroudé, P., Sommeria, J., & Maître, T. (2020). An optimally-controlled RANS Actuator force model for efficient computations of tidal turbine arrays. Ocean Engineering, 212(October 2019), 107677. https://doi.org/10.1016/j.oceaneng.2020.107677
  15. Ding, P., Wang, S., & Chen, K. (2020). Chinese Journal of Chemical Engineering Numerical study on turbulent mixed convection in a vertical plane channel using hybrid RANS / LES and LES models ☆. Chinese Journal of Chemical Engineering, 28(1), 1–8. https://doi.org/10.1016/j.cjche.2019.04.007
  16. Economic Planning Unit. (2015). Rancangan Malaysia Kesebelas (Eleventh Malaysia Plan) : 2016-2020. http://rmk11.epu.gov.my/book/eng/Elevent-Malaysia-Plan/RMKe-11 Book.pdf
  17. Elbatran, A. H. A., Yaakob, O. B., Ahmed, Y. M., & Abdullah, F. B. (2016). Augmented diffuser for horizontal axis marine current turbine. International Journal of Power Electronics and Drive Systems, 7(1), 235–245. https://doi.org/10.11591/ijpeds.v7.i1.pp235-245
  18. Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shehata, A. S. (2018). Numerical and experimental investigations on efficient design and performance of hydrokinetic Banki cross flow turbine for rural areas. Ocean Engineering, 159(December 2017), 437–456. https://doi.org/10.1016/j.oceaneng.2018.04.042
  19. Garces, L. R., Stobutzki, I., Alias, M., Campos, W., Koongchai, N., Lachica-Alino, L., Mustafa, G., Nurhakim, S., Srinath, M., & Silvestre, G. (2006). Spatial structure of demersal fish assemblages in South and Southeast Asia and implications for fisheries management. Fisheries Research, 78(2–3), 143–157. https://doi.org/10.1016/j.fishres.2006.02.005
  20. Ghazvinei, P. T., Darvishi, H. H., & Bhatia, A. (2018). Sustainable power generation by tidal current turbine in straits of Malacca. MATEC Web of Conferences, 198. https://doi.org/10.1051/matecconf/201819804004
  21. Harrison, M. E., Batten, W. M. J., Myers, L. E., & Bahaj, A. S. (2010). Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, 4(6), 613–627. https://doi.org/10.1049/iet-rpg.2009.0193
  22. Hassanli, S. (2019). Flow enhancement in and around buildings for wind energy harvesting. May
  23. Hassanzadeh, R., Yaakob, O. bin, Taheri, M. M., Hosseinzadeh, M., & Ahmed, Y. M. (2018). An innovative configuration for new marine current turbine. Renewable Energy, 120, 413–422. https://doi.org/10.1016/j.renene.2017.11.095
  24. Hoe, B. C. (2019). The Influence of Tidal Turbine In Array Configuration on The Wake Formation For Shallow Water. School of Mechatronic Engineering
  25. Husain, M. K. A., Zaki, N. I. M., Husin, S. M. C., Mukhlas, N. A., Ahmad, S. Z. A. S., Husain, N. A., & Rashidi, A. H. M. (2019). Integrated tidal marine turbine for power generation with coastal erosion breakwater. International Journal of Civil Engineering and Technology, 10(2), 1277–1293. http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=2
  26. Johnson, B., Francis, J., Howe, J., & Whitty, J. (2014). Computational Actuator Disc Models for Wind and Tidal Applications. Journal of Renewable Energy, 2014, 1–10. https://doi.org/10.1155/2014/172461
  27. Jump, E., Macleod, A., & Wills, T. (2020). Review of tidal turbine wake modelling methods—state of the art. International Marine Energy Journal, 3(2), 91–100. https://doi.org/10.36688/imej.3.91-100
  28. Kai, L. Y., Sarip, S., Kaidi, H. M., Ardila-Rey, J. A., Samsuddin, N. M., Muhtazaruddin, M. N., Muhammad-Sukki, F., & Aziz, S. A. (2021). Current Status and Possible Future Applications of Marine Current Energy Devices in Malaysia: A Review. IEEE Access, 9, 86869–86888. https://doi.org/10.1109/ACCESS.2021.3088761
  29. Lafleur, C., Truelove, W. AL, Cousineau, J., Hiles, C. E., Buckham, B., & Crawford, C. (2020). A screening method to quantify the economic viability of off-grid in-stream tidal energy deployment. Renewable Energy, 159, 610–622. https://doi.org/10.1016/j.renene.2020.05.102
  30. Lavaroni, L., Watson, S. J., Cook, M. J., & Dubal, M. R. (2014). A comparison of actuator disc and BEM models in CFD simulations for the prediction of offshore wake losses. Journal of Physics: Conference Series, 524(1). https://doi.org/10.1088/1742-6596/524/1/012148
  31. Lee, K. S., & Seng, L. Y. (2009). Simulation Studies on the Electrical Power Potential Harnessed by Tidal Current Turbines. Journal of Energy and Environment, 1, 18–23
  32. Lim, Y. S., & Koh, S. L. (2010). Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia. Renewable Energy, 35(5), 1024–1032. https://doi.org/10.1016/j.renene.2009.10.016
  33. Maganga, F., Germain, G., King, J., Pinon, G., & Rivoalen, E. (2010). Institution of Engineering and Technology. Archimer, 4(6), 498–509
  34. Maître, T., Amet, E., & Pellone, C. (2013). Modeling of the flow in a Darrieus water turbine : Wall grid re fi nement analysis and comparison with experiments. Renewable Energy, 51, 497–512. https://doi.org/10.1016/j.renene.2012.09.030
  35. Mason-jones, A., Doherty, D. M. O., Morris, C. E., Doherty, T. O., Byrne, C. B., Prickett, P. W., Grosvenor, R. I., Owen, I., Tedds, S., & Poole, R. J. (2012). Non-dimensional scaling of tidal stream turbines. Energy, 44(1), 820–829. https://doi.org/10.1016/j.energy.2012.05.010
  36. Matus, B. I. (2016). Aerodynamic Analysis and Rapid Prototyping of a Spiral Wind Turbine. Kun Shan University of Science and Technology
  37. Mohd Chachuli, F. S., Mat, S., Ludin, N. A., & Sopian, K. (2021). Performance evaluation of renewable energy R&D activities in Malaysia. Renewable Energy, 163, 544–560. https://doi.org/10.1016/j.renene.2020.08.160
  38. Myers, L. E., & Bahaj, A. S. (2010). Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Engineering, 37(2–3), 218–227. https://doi.org/10.1016/j.oceaneng.2009.11.004
  39. Ng, H. C. H., Collignon, E., Poole, R. J., & Dennis, D. J. C. (2021). Energetic motions in turbulent partially filled pipe flow. Physics of Fluids, 33(2). https://doi.org/10.1063/5.0031639
  40. Petinrin, J. O., & Shaaban, M. (2015). Renewable energy for continuous energy sustainability in Malaysia. Renewable and Sustainable Energy Reviews, 50, 967–981. https://doi.org/10.1016/j.rser.2015.04.146
  41. Rahman, A., Ibrahim, I., & Rahman, M. T. A. (2019). Assessment of the Malaysian Tidal Stream Energy Resources. IOP Conference Series: Materials Science and Engineering, 670(1). https://doi.org/10.1088/1757-899X/670/1/012025
  42. Ren, H., Zhang, X., Kang, S., & Liang, S. (2019). Actuator disc approach of wind turbinewake simulation considering balance of turbulence kinetic energy. Energies, 12(1). https://doi.org/10.3390/en12010016
  43. Sakmani, A. S., Lam, W. H., Hashim, R., & Chong, H. Y. (2013). Site selection for tidal turbine installation in the Strait of Malacca. Renewable and Sustainable Energy Reviews, 21, 590–602. https://doi.org/10.1016/j.rser.2012.12.050
  44. Salem, A., Souf, M., & Maimun, A. D. I. (2015). Low speed vertical axis current turbine for electrification of remote areas in Malaysia. Recent Advances in Renewable Energy Sources, 75–82
  45. Salunkhe, S., Fajri, O. El, Bhushan, S., Thompson, D., O’Doherty, D., O’Doherty, T., & Mason-Jones, A. (2019). Validation of Tidal Stream Turbine Wake Predictions and Analysis of Wake Recovery Mechanism. Journal of Marine Science and Engineering, 7(10). https://doi.org/10.3390/jmse7100362
  46. Samo, K. A., Samo, I. A., Siyal, Z. A., & Rigit, A. R. H. (2020). Determination of Potential Tidal Power Sites at East Malaysia. Engineering, Technology & Applied Science Research, 10(4), 6047–6051. https://doi.org/10.48084/etasr.3674
  47. Shen, W. Z. (2002). Numerical Modeling of Wind. Journal of Fluid Engineering, 124(June), 393–399. https://doi.org/10.1115/1.1471361
  48. Shur, M. L., Spalart, P. R., Kh, M., & Travin, A. K. (2008). International Journal of Heat and Fluid Flow A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29(6), 406–417. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  49. Tedds, S. C., Owen, I., & Poole, R. J. (2014). Near-wake characteristics of a model horizontal axis tidal stream turbine. Renewable Energy, 63, 222–235. https://doi.org/10.1016/j.renene.2013.09.011
  50. V M M G Costa Gomes;, J M L M Palma;, & A Silva Lopes. (2014). Improving actuator disk wake model. Journal of Physics: Conference Series 524. https://doi.org/10.1088/1742-6596/524/1/012170
  51. Vermeer, L. J., S, J. N., & Crespo, A. (2003). Wind turbine wake aerodynamics. Progress in Aerospace Sciences, 39, 467–510. https://doi.org/10.1016/S0376-0421(03)00078-2
  52. Vinod, A., Han, C., & Banerjee, A. (2021). Tidal turbine performance and near-wake characteristics in a sheared turbulent in fl ow. Renewable Energy, 175, 840–852. https://doi.org/10.1016/j.renene.2021.05.026
  53. Wang, Y., & Liu, Z. (2021). Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter. Renewable Energy, 179, 563–583. https://doi.org/10.1016/j.renene.2021.07.054
  54. Yaakob, O. B., Suprayogi, D. T., Abdul Ghani, M. P., & Tawi, K. B. (2013). Experimental studies on savonius-type vertical axis turbine for low marine current velocity. International Journal of Engineering, Transactions A: Basics, 26(1), 91–98. https://doi.org/10.5829/idosi.ije.2013.26.01a.12
  55. Yaakob, O. B., Yasser, M., Bin Mazlan, M. N., Jaafar, K. E., & Raja Muda, R. M. (2013). Model testing of an ocean wave energy system for Malaysian sea. World Applied Sciences Journal, 22(5), 667–671. https://doi.org/10.5829/idosi.wasj.2013.22.05.2848
  56. Yaakob, O., M. Yusuf, M. A., Jamian, J. J., Baharudin, M. A., Kang, H. S., Shaharuddin, N. M. R., Hashim, F. E., Aspar, Z., Mustapa, M. A., Ismail, M. A., Abd Rahim, A. M., Bazli, M. S., Khaliddin, N., & Jupri, S. S. (2018). Combined ocean renewable energy system (CORES) for islandic area on Malaysian seas. The Asian Wave and Tidal Energy Conference (AWTEC) 2018
  57. Yaakob, O., Rashid, T. A., & Mukti, M. (2006). Prospects for ocean energy in Malaysia. International Conference on Energy and Environment 2006, 2006(August), 1–7. http://www.uniten.edu.my/newhome/uploaded/coe/icee 2006/proceedings/renewable energy technology/UNITEN ICEE 2006 Prospects for Ocean Energy in Malaysia.pdf
  58. Yang, Q., Li, H., Li, T., & Zhou, X. (2021). Wind farm layout optimization for levelized cost of energy minimization with combined analytical wake model and hybrid optimization strategy. Energy Conversion and Management, 248, 114778. https://doi.org/10.1016/j.enconman.2021.114778

Last update:

No citation recorded.

Last update: 2024-04-26 18:58:41

No citation recorded.