skip to main content

Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

1Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

2Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

3Faculty of Environment and Resource Studies, Mahasarakham University, 44150, Viet Nam

4 Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand

View all affiliations
Received: 19 Jul 2023; Revised: 30 Aug 2023; Accepted: 12 Sep 2023; Available online: 23 Sep 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The global demand for biochar in agricultural and carbon sequestration applications is increasing; nevertheless, biochar production using the 50-liter household biomass gasifier stove (50L-HBGS) in Thailand found major issues that need to be improved. The objective of this study was to study the effects of the airflow in the non-uniform combustion core shape (NCCS) on the biochar production characteristic of the 50L-HBGS. The new design of the NCCS was constructed and studied to replace the existing combustion core shape (ECCS) at Mahasarakham University. The height, air inlet, and air outlet diameters of the NCCS were designed at 45, 24, and 11.4 cm, respectively. The NCCS with 21 holes of the pyrolysis gas outlet, a diameter of 4 mm for each, was integrated into the 50L-HBGS and performed comparative tests to the ECCS using 9 kg of bamboo wood chunks in three consecutive experiments. The airflow and the combustion behavior were studied through the stove temperature profiles, which were recorded every 5 minutes using a digital data logger. The biochar products were studied using the scanning electron microscope (SEM) with the energy dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and the proximate analysis technique. The study indicated that the 50L-HBGS with the NCCS made significantly improved the airflow rates in the combustion core, resulting in better continuous burning during the ignition state than with the ECCS. Moreover, the pyrolysis temperatures were significantly improved, it was provided temperatures during the pyrolysis process reached higher than 500 oC, resulting in the liquid tar being removed and no unburned wood chunks remaining at the end. The characterization result demonstrated that the 50L-HBGS with the NCCS had created biochar within a range of micropore and macrospore sizes and high fixed carbon content, which could be advantageously used for different agricultural and carbon sequestration applications.

Fulltext View|Download
Keywords: Biochar; Pyrolysis; Bamboo; Gasifier Stove; Heat Transfer
Funding: Mahasarakham University

Article Metrics:

  1. Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Zafar, M., Hussain, M., ... & Park, Y. K. (2020). Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan. Korean Journal of Chemical Engineering, 37, 1899-1906,
  2. Abdullah, N., Taib, R. M., Aziz, N. S. M., Omar, M. R., & Disa, N. M. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1).
  3. Adeniyi, A. G., Adeyanju, C. A., Iwuozor, K. O., Odeyemi, S. O., Emenike, E. C., Ogunniyi, S., & Te-Erebe, D. K. (2023). Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technologies and Environmental Policy, 25(3), 937-947.
  4. Ajieh, M. U., Owamah, H. I., Edomwonyi-Otu, L. C., Ajieh, G. I., Aduba, P., Owebor, K., & Ikpeseni, S. C. (2023). Characteristics of fuelwood perturbation and effects on carbon monoxide and particulate pollutants emission from cookstoves in Nigeria. Energy for Sustainable Development, 72, 151-161.
  5. Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & engineering chemistry research, 42(8), 1619-1640,
  6. Armynah, B., Atika, Djafar, Z., Piarah, W. H., & Tahir, D. (2018, March). Analysis of chemical and physical properties of biochar from rice husk biomass. In Journal of Physics: Conference Series (Vol. 979, p. 012038), IOP Publishing,
  7. Armynah, B., Tahir, D., Tandilayuk, M., Djafar, Z., & Piarah, W. H. (2019). Potentials of biochars derived from bamboo leaf biomass as energy sources: effect of temperature and time of heating. International Journal of Biomaterials, 2019,
  8. Baldoni, N., Francioni, M., Trozzo, L., Toderi, M., Fornasier, F., D'Ottavio, P., ... & Cocco, S. (2023). Effect of wood gasification biochar on soil physicochemical properties and enzyme activities, and on crop yield in a wheat-production system with sub-alkaline soil. Biomass and Bioenergy, 176, 106914.
  9. Balmuk, G., Videgain, M., Manyà, J. J., Duman, G., & Yanik, J. (2023). Effects of pyrolysis temperature and pressure on agronomic properties of biochar. Journal of Analytical and Applied Pyrolysis, 169, 105858.
  10. Basinas, P., Rusín, J., Chamrádová, K., & Kaldis, S. P. (2023). Pyrolysis of the anaerobic digestion solid by-product: characterization of digestate decomposition and screening of the biochar use as soil amendment and as additive in anaerobic digestion. Energy Conversion and Management, 277, 116658.
  11. Binh, Q. A., Nguyen, V. H., & Kajitvichyanukul, P. (2022). Influence of pyrolysis conditions of modified corn cob bio-waste sorbents on adsorption mechanism of atrazine in contaminated water. Environmental Technology & Innovation, 26, 102381.
  12. Boateng, A. A., Garcia-Perez, M., Mašek, O., Brown, R., & del Campo, B. (2015). Biochar production technology. In Biochar for environmental management (pp. 63-87). Routledge, London
  13. Bonanomi, G., Cesarano, G., Iacomino, G., Cozzolino, A., Motti, R., & Idbella, M. (2023). Decomposition of Posidonia oceanica (L.) Delile Leaf Blade and Rhizome in Terrestrial Conditions: Effect of Temperature and Substrate Fertility. Waste and Biomass Valorization, 14(6), 1869-1878.
  14. Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13, pp. 662-710). Prentice Hall, Upper Saddle River, NJ
  15. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94,
  16. Carter, S., & Shackley, S. (2011). Biochar Stoves: an innovation studies perspective. UK Biochar Research Centre, University of Edinburgh.
  17. Crombie K, Masek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5, 122–131,
  18. Crombie, K., & Mašek, O. (2015). Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. Gcb Bioenergy, 7(2), 349-361,
  19. Chen, B., Gu, Z., Wu, M., Ma, Z., Lim, H. R., Khoo, K. S., & Show, P. L. (2022). Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass and Bioenergy, 167, 106650.
  20. Chen, L., Cheng, P., Ye, L., Chen, H., Xu, X., & Zhu, L. (2020). Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. Bioresource technology, 302, 122805.
  21. Chen, W., Gan, L., & Huang, J. (2023). Design, Manufacturing and Functions of Pore-Structured Materials: From Biomimetics to Artificial. Biomimetics, 8(2), 140.
  22. Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181,
  23. Chen, X., Zhang, J., Lin, Q., Li, G., & Zhao, X. (2023). Dispose of Chinese cabbage waste via hydrothermal carbonization: hydrochar characterization and its potential as a soil amendment. Environmental Science and Pollution Research, 30(2), 4592-4602.
  24. Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., ... & Chen, Z. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: a review. Sustainability, 15(3), 2527.
  25. Enders A., Hanley K., Whitman T., Joseph S., Lehmann J. (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Tech-nology, 114, 644–653,
  26. Faraji, M., & Saidi, M. (2023). Experimental and simulation study of peanut shell-derived activated carbon and syngas production via integrated pyrolysis-gasification technique. Process Safety and Environmental Protection, 171, 874-887.
  27. Fatima, B., Bibi, F., Ali, M. I., Woods, J., Ahmad, M., Mubashir, M., ... & Khoo, K. S. (2022). Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. Waste Management, 153, 197-208.
  28. Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2, 1-21.
  29. Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., & Liu, L. (2022). Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Science & Technology, 100059.
  30. Grover, P. D., Iyer, P. V. R., & Rao, T. R. (2002). Biomass thermochemical characterization, IIT Delhi: MNES, Delhi, India, Third edition
  31. Hernandez-Mena, L. E., Pécoraa, A. A., & Beraldob, A. L. (2014). Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng, 37, 115-120,
  32. Hettithanthri, O., Rajapaksha, A. U., Nanayakkara, N., & Vithanage, M. (2023). Temperature influence on layered double hydroxide tailored corncob biochar and its application for fluoride removal in aqueous media. Environmental Pollution, 320, 121054
  33. Ibitoye, S. E., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2022). Combustion, Physical, and Mechanical Characterization of Composites Fuel Briquettes from Carbonized Banana Stalk and Corncob. International Journal of Renewable Energy Development, 11(2).
  34. Idris, S. S., Zailan, M. I., Azron, N., & Rahman, N. A. (2021). Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics. International Journal of Renewable Energy Development, 10(3).
  35. Intagun, W., Khamdaeng, T., Prom-Ngarm, P., & Panyoyai, N. (2018). Effect of core puncture diameter on bio-char kiln efficiency. International Journal of Biotechnology and Bioengineering, 12(11), 435-439,
  36. Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., ... & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421-438.
  37. Jeffery, I. E., Akinyemi, O. O., Adedoyin, A. A., & Matthew, U. F. (2023). Potentials of bamboo and its ecological benefits in Nigeria. Advances in Bamboo Science, 100032.
  38. Jian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology & Innovation, 10, 27-35
  39. Ji, Y., Zhang, C., Zhang, X. J., Xie, P. F., Wu, C., & Jiang, L. (2022). A high adsorption capacity bamboo biochar for CO2 capture for low temperature heat utilization. Separation and Purification Technology, 293, 121131,
  40. Kalderis, D., Seifi, A., Trang, T. K., Tsubota, T., Anastopoulos, I., Manariotis, I., ... & Khataee, A. (2023). Bamboo-derived adsorbents for environmental remediation: A review of recent progress. Environmental Research, 115533.
  41. Khaledi, S., Delbari, M., Galavi, H., Bagheri, H., & Chari, M. M. (2023). Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil and Tillage Research, 226, 105579.
  42. Kumar, S., Rawat, D., Singh, B., & Khanduri, V. P. (2023). Utilization of bamboo resources and their market value in the western Himalayan region of India. Advances in Bamboo Science, 100019.
  43. Kurniawan, T. A., Othman, M. H. D., Liang, X., Goh, H. H., Gikas, P., Chong, K. K., & Chew, K. W. (2023). Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of environmental management, 332, 117429,
  44. Klüpfel, L., M. Keiluweit, M. Kleber, and M. Sander. 2014. “Redox properties of plant biomass-derived black carbon (biochar).” Environmental Science & Technology, 48:5601–5611,
  45. Kongnine, D. M., Kpelou, P., Attah, N. G., Kombate, S., Mouzou, E., Djeteli, G., & Napo, K. (2020). Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells. International Journal of Renewable Energy Development, 9(1).
  46. Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y. K., ... & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresource technology, 148, 196-201,
  47. Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: science, technology and implementation. Routledge, London,
  48. Li, L., Long, A., Fossum, B., & Kaiser, M. (2023). Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis. Soil Use and Management, 39(1), 43-52.
  49. Liu, Z., Wang, Z., Chen, H., Cai, T., & Liu, Z. (2021). Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environmental Pollution, 268, 115910.
  50. Maneekhat, C., & Khamdaeng, T. (2022). Thermal Characteristics of Anila-type Biochar Kiln. Doctoral dissertation, Maejo University, Chiangmai,
  51. Meyer, D. (2009). Biochar - a survey. Special assignment in energy and process engineering. Finland: Tampere University of Technology
  52. Mosisa, F. T., Tibba, G. S., & Bayisa, B. (2019). Biochar production using pyrolysis cook stove from coffee husk, wood working wastes and wastes from bedebe brewery. International Journal of Multidisciplinary Educational Research, 5(3), 178-187.
  53. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W., & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128.
  54. Nair, R. R., Kißling, P. A., Marchanka, A., Lecinski, J., Turcios, A. E., Shamsuyeva, M., ... & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustainable Environment Research, 33(1), 1-17.
  55. Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and adaptation strategies for global change, 11, 429-444,
  56. Ojolo, S. J., Osheku, C. A., & Sobamowo, M. G. (2013). Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle. International Journal of Renewable Energy Development, 2(2), 105-115
  57. Ong, H. C., Yu, K. L., Chen, W. H., Pillejera, M. K., Bi, X., Tran, K. Q., ... & Petrissans, M. (2021). Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renewable and Sustainable Energy Reviews, 152, 111698.
  58. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S., Oki, M., Adeoye, A. O., & Akinlabi, E. T. (2022). Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. International Journal of Renewable Energy Development, 11(4).
  59. Oram, N. J., van de Voorde, T. F., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Van Groenigen, J. W. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment, 191, 92-98,
  60. Pradana, Y. S., & Prasetya, A. (2017, March). Performance evaluation of household pyrolytic stove: Effect of outer air holes condition. In AIP Conference Proceedings (Vol. 1823, No. 1, p. 020069). AIP Publishing LLC,
  61. Prakongkep, N., Gilkes, R., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., ... & Hammecker, C. (2020). Effects of biochar on properties of tropical sandy soils under organic agriculture. Journal of Agricultural Science, 13(1), 1-17.
  62. Panyoyai, N., Petchaihan, L., Wongsiriamnuay, T., Hiransatitporn, B., & Khamdaeng, T. (2019). Simulation of temperature distribution in biochar kiln with different feedstock types. Engineering Access, 5(2), 59-64,
  63. Petchaihan, L., Panyoyai, N., Khamdaeng, T., & Wongsiriamnuay, T. (2020, March). Test of a modified small-scale biochar kiln. In IOP Conference Series: Earth and Environmental Science (Vol. 463, No. 1, p. 012004). IOP Publishing.
  64. Pinisakul, A., Kruatong, N., Vinitnantharat, S., Wilamas, P., Neamchan, R., Sukkhee, N., ... & Sanghaisuk, S. (2023). Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars. C, 9(2), 40.
  65. Qian, S., Zhou, X., Fu, Y., Song, B., Yan, H., Chen, Z., ... & Lai, C. (2023). Biochar-compost as a new option for soil improvement: Application in various problem soils. Science of The Total Environment, 870, 162024.
  66. Rusch, F., Wastowski, A. D., de Lira, T. S., Moreira, K. C. C. S. R., & de Moraes Lúcio, D. (2023). Description of the component properties of species of bamboo: a review. Biomass Conversion and Biorefinery, 13(3), 2487-2495.
  67. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Rizkiana, J., & Guan, G. (2022). Synthesis and characterization of hydrochar and bio-oil from hydrothermal carbonization of Sargassum sp. using choline chloride (ChCl) catalyst. International Journal of Renewable Energy Development, 11(2)), 403-412.
  68. Sahoo, S. S., Vijay, V. K., Chandra, R., & Kumar, H. (2021). Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology, 3, 100101,
  69. Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671.
  70. Sayed, E. T., Olabi, A. G., Shehata, N., Al Radi, M., Muhaisen, O. M., Rodriguez, C., ... & Abdelkareem, M. A. (2022). Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment. Ain Shams Engineering Journal, 102030.
  71. Sawarkar, A. D., Shrimankar, D. D., Kumar, A., Kumar, A., Singh, E., Singh, L., ... & Kumar, R. (2020). Commercial clustering of sustainable bamboo species in India. Industrial Crops and Products, 154, 112693.
  72. Sawarkar, A. D., Shrimankar, D. D., Kumar, M., Kumar, P., & Singh, L. (2023). Bamboos as a cultivated medicinal grass for industries: A systematic review. Industrial Crops and Products, 203, 117210.
  73. Shen, Q., & Wu, H. (2023). Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: the effects of particle residence time on char properties. Proceedings of the Combustion Institute, 39(3), 3371-3378.
  74. Sittioad, C., Tantikul, S., Wongsiriamnuay, T., Khamdaeng, T., Tippayawong, N., & Panyoyai, N. (2022, November). Temperature distribution and properties of biochar from a two-heating-stage kiln. In AIP Conference Proceedings (Vol. 2681, No. 1, p. 020046). AIP Publishing LLC,
  75. Smebye, A. B., Sparrevik, M., Schmidt, H. P., & Cornelissen, G. (2017). Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass and Bioenergy, 101, 35-43.
  76. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215.
  77. Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., ... & Briančin, J. (2018). Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Management, 79, 385-394,
  78. Wang, H., Wang, X., Cui, Y., Xue, Z., & Ba, Y. (2018). Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresource technology, 263, 444-449,
  79. Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181(5), 635-643,
  80. Xu, Z., Liu, Y., Chen, H., Yang, M., & Li, H. (2017). Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes for supercapacitor applications. Journal of Materials Science, 52, 7781-7793.
  81. Yablonovitch, E., & Deckman, H. W. (2023). Scalable, economical, and stable sequestration of agricultural fixed carbon. Proceedings of the National Academy of Sciences, 120(16), e2217695120,
  82. Yang, K., Yang, J., Jiang, Y., Wu, W., & Lin, D. (2016). Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environmental Pollution, 210, 57-64,
  83. You, X., Wang, X., Sun, R., Liu, Q., Fang, S., Kong, Q., ... & Li, Y. (2023). Hydrochar more effectively mitigated nitrous oxide emissions than pyrochar from a coastal soil of the Yellow River Delta, China. Science of The Total Environment, 858, 159628.
  84. Zahida, R., Waseem, R., Kanth, R. H., Ashaq, H., Parmeet, S., Pir, F. A., ... & Aijaz, N. (2017). Biochar: A Tool for Mitigating Climate Change-A Review. Chem Sci Rev Lett, 6, 1561-1574.
  85. Zhang, Y., Chen, F., Chen, D., Cen, K., Zhang, J., & Cao, X. (2020). Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biomass Conversion and Biorefinery, 1-10.
  86. Zhao, R., Wang, X., Liu, L., Li, P., & Tian, L. (2019). Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gases analysis. Bioresource technology, 289, 121674,

Last update:

No citation recorded.

Last update: 2024-05-27 13:16:05

No citation recorded.