skip to main content

Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

1Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

2Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Viet Nam

3Faculty of Environment and Resource Studies, Mahasarakham University, 44150, Viet Nam

4 Department of Physics, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand

View all affiliations
Received: 19 Jul 2023; Revised: 30 Aug 2023; Accepted: 12 Sep 2023; Available online: 23 Sep 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The global demand for biochar in agricultural and carbon sequestration applications is increasing; nevertheless, biochar production using the 50-liter household biomass gasifier stove (50L-HBGS) in Thailand found major issues that need to be improved. The objective of this study was to study the effects of the airflow in the non-uniform combustion core shape (NCCS) on the biochar production characteristic of the 50L-HBGS. The new design of the NCCS was constructed and studied to replace the existing combustion core shape (ECCS) at Mahasarakham University. The height, air inlet, and air outlet diameters of the NCCS were designed at 45, 24, and 11.4 cm, respectively. The NCCS with 21 holes of the pyrolysis gas outlet, a diameter of 4 mm for each, was integrated into the 50L-HBGS and performed comparative tests to the ECCS using 9 kg of bamboo wood chunks in three consecutive experiments. The airflow and the combustion behavior were studied through the stove temperature profiles, which were recorded every 5 minutes using a digital data logger. The biochar products were studied using the scanning electron microscope (SEM) with the energy dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and the proximate analysis technique. The study indicated that the 50L-HBGS with the NCCS made significantly improved the airflow rates in the combustion core, resulting in better continuous burning during the ignition state than with the ECCS. Moreover, the pyrolysis temperatures were significantly improved, it was provided temperatures during the pyrolysis process reached higher than 500 oC, resulting in the liquid tar being removed and no unburned wood chunks remaining at the end. The characterization result demonstrated that the 50L-HBGS with the NCCS had created biochar within a range of micropore and macrospore sizes and high fixed carbon content, which could be advantageously used for different agricultural and carbon sequestration applications.

Fulltext View|Download
Keywords: Biochar; Pyrolysis; Bamboo; Gasifier Stove; Heat Transfer
Funding: Mahasarakham University

Article Metrics:

  1. Abdullah, A., Ahmed, A., Akhter, P., Razzaq, A., Zafar, M., Hussain, M., ... & Park, Y. K. (2020). Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan. Korean Journal of Chemical Engineering, 37, 1899-1906, https://doi.org/10.1007/s11814-020-0624-0
  2. Abdullah, N., Taib, R. M., Aziz, N. S. M., Omar, M. R., & Disa, N. M. (2023). Banana pseudo-stem biochar derived from slow and fast pyrolysis process. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12940
  3. Adeniyi, A. G., Adeyanju, C. A., Iwuozor, K. O., Odeyemi, S. O., Emenike, E. C., Ogunniyi, S., & Te-Erebe, D. K. (2023). Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technologies and Environmental Policy, 25(3), 937-947. https://doi.org/10.1007/s10098-022-02415-w
  4. Ajieh, M. U., Owamah, H. I., Edomwonyi-Otu, L. C., Ajieh, G. I., Aduba, P., Owebor, K., & Ikpeseni, S. C. (2023). Characteristics of fuelwood perturbation and effects on carbon monoxide and particulate pollutants emission from cookstoves in Nigeria. Energy for Sustainable Development, 72, 151-161. https://doi.org/10.1016/j.esd.2022.12.008
  5. Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & engineering chemistry research, 42(8), 1619-1640, https://doi.org/10.1021/ie0207919
  6. Armynah, B., Atika, Djafar, Z., Piarah, W. H., & Tahir, D. (2018, March). Analysis of chemical and physical properties of biochar from rice husk biomass. In Journal of Physics: Conference Series (Vol. 979, p. 012038), IOP Publishing, https://doi.org/10.1088/1742-6596/979/1/012038
  7. Armynah, B., Tahir, D., Tandilayuk, M., Djafar, Z., & Piarah, W. H. (2019). Potentials of biochars derived from bamboo leaf biomass as energy sources: effect of temperature and time of heating. International Journal of Biomaterials, 2019, https://doi.org/10.1155/2019/3526145
  8. Baldoni, N., Francioni, M., Trozzo, L., Toderi, M., Fornasier, F., D'Ottavio, P., ... & Cocco, S. (2023). Effect of wood gasification biochar on soil physicochemical properties and enzyme activities, and on crop yield in a wheat-production system with sub-alkaline soil. Biomass and Bioenergy, 176, 106914. https://doi.org/10.1016/j.biombioe.2023.106914
  9. Balmuk, G., Videgain, M., Manyà, J. J., Duman, G., & Yanik, J. (2023). Effects of pyrolysis temperature and pressure on agronomic properties of biochar. Journal of Analytical and Applied Pyrolysis, 169, 105858. https://doi.org/10.1016/j.jaap.2023.105858
  10. Basinas, P., Rusín, J., Chamrádová, K., & Kaldis, S. P. (2023). Pyrolysis of the anaerobic digestion solid by-product: characterization of digestate decomposition and screening of the biochar use as soil amendment and as additive in anaerobic digestion. Energy Conversion and Management, 277, 116658. https://doi.org/10.1016/j.enconman.2023.116658
  11. Binh, Q. A., Nguyen, V. H., & Kajitvichyanukul, P. (2022). Influence of pyrolysis conditions of modified corn cob bio-waste sorbents on adsorption mechanism of atrazine in contaminated water. Environmental Technology & Innovation, 26, 102381. https://doi.org/10.1016/j.eti.2022.102381
  12. Boateng, A. A., Garcia-Perez, M., Mašek, O., Brown, R., & del Campo, B. (2015). Biochar production technology. In Biochar for environmental management (pp. 63-87). Routledge, London
  13. Bonanomi, G., Cesarano, G., Iacomino, G., Cozzolino, A., Motti, R., & Idbella, M. (2023). Decomposition of Posidonia oceanica (L.) Delile Leaf Blade and Rhizome in Terrestrial Conditions: Effect of Temperature and Substrate Fertility. Waste and Biomass Valorization, 14(6), 1869-1878. https://doi.org/10.1007/s12649-022-01990-9
  14. Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13, pp. 662-710). Prentice Hall, Upper Saddle River, NJ
  15. Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94, https://doi.org/10.1016/j.biombioe.2011.01.048
  16. Carter, S., & Shackley, S. (2011). Biochar Stoves: an innovation studies perspective. UK Biochar Research Centre, University of Edinburgh. http://www.build-a-gasifier.com/PDF/BiocharStovesInnovation2011.pdf
  17. Crombie K, Masek O, Sohi SP, Brownsort P, Cross A (2013) The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5, 122–131, https://doi.org/10.1111/gcbb.12030
  18. Crombie, K., & Mašek, O. (2015). Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. Gcb Bioenergy, 7(2), 349-361, https://doi.org/10.1111/gcbb.12137
  19. Chen, B., Gu, Z., Wu, M., Ma, Z., Lim, H. R., Khoo, K. S., & Show, P. L. (2022). Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass and Bioenergy, 167, 106650. https://doi.org/10.1016/j.biombioe.2022.106650
  20. Chen, L., Cheng, P., Ye, L., Chen, H., Xu, X., & Zhu, L. (2020). Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. Bioresource technology, 302, 122805. https://doi.org/10.1016/j.biortech.2020.122805
  21. Chen, W., Gan, L., & Huang, J. (2023). Design, Manufacturing and Functions of Pore-Structured Materials: From Biomimetics to Artificial. Biomimetics, 8(2), 140. https://doi.org/10.3390/biomimetics8020140
  22. Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181, https://doi.org/10.1016/j.chemosphere.2009.12.029
  23. Chen, X., Zhang, J., Lin, Q., Li, G., & Zhao, X. (2023). Dispose of Chinese cabbage waste via hydrothermal carbonization: hydrochar characterization and its potential as a soil amendment. Environmental Science and Pollution Research, 30(2), 4592-4602. https://doi.org/10.1007/s11356-022-22359-4
  24. Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., ... & Chen, Z. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: a review. Sustainability, 15(3), 2527. https://doi.org/10.3390/su15032527
  25. Enders A., Hanley K., Whitman T., Joseph S., Lehmann J. (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Tech-nology, 114, 644–653, https://doi.org/10.1016/j.biortech.2012.03.022
  26. Faraji, M., & Saidi, M. (2023). Experimental and simulation study of peanut shell-derived activated carbon and syngas production via integrated pyrolysis-gasification technique. Process Safety and Environmental Protection, 171, 874-887. https://doi.org/10.1016/j.psep.2023.01.052
  27. Fatima, B., Bibi, F., Ali, M. I., Woods, J., Ahmad, M., Mubashir, M., ... & Khoo, K. S. (2022). Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables. Waste Management, 153, 197-208. https://doi.org/10.1016/j.wasman.2022.08.016
  28. Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2, 1-21. https://doi.org/10.1007/s42452-020-3121-5
  29. Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., & Liu, L. (2022). Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Science & Technology, 100059. https://doi.org/10.1016/j.ccst.2022.100059
  30. Grover, P. D., Iyer, P. V. R., & Rao, T. R. (2002). Biomass thermochemical characterization, IIT Delhi: MNES, Delhi, India, Third edition
  31. Hernandez-Mena, L. E., Pécoraa, A. A., & Beraldob, A. L. (2014). Slow pyrolysis of bamboo biomass: analysis of biochar properties. Chem Eng, 37, 115-120, https://doi.org/10.3303/CET1437020
  32. Hettithanthri, O., Rajapaksha, A. U., Nanayakkara, N., & Vithanage, M. (2023). Temperature influence on layered double hydroxide tailored corncob biochar and its application for fluoride removal in aqueous media. Environmental Pollution, 320, 121054
  33. Ibitoye, S. E., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2022). Combustion, Physical, and Mechanical Characterization of Composites Fuel Briquettes from Carbonized Banana Stalk and Corncob. International Journal of Renewable Energy Development, 11(2). https://doi.org/10.14710/ijred.2022.41290
  34. Idris, S. S., Zailan, M. I., Azron, N., & Rahman, N. A. (2021). Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics. International Journal of Renewable Energy Development, 10(3). https://doi.org/10.14710/ijred.2021.33101
  35. Intagun, W., Khamdaeng, T., Prom-Ngarm, P., & Panyoyai, N. (2018). Effect of core puncture diameter on bio-char kiln efficiency. International Journal of Biotechnology and Bioengineering, 12(11), 435-439, https://core.ac.uk/download/pdf/211931141.pdf
  36. Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., ... & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2, 421-438. https://doi.org/10.1007/s42773-020-00067-x
  37. Jeffery, I. E., Akinyemi, O. O., Adedoyin, A. A., & Matthew, U. F. (2023). Potentials of bamboo and its ecological benefits in Nigeria. Advances in Bamboo Science, 100032. https://doi.org/10.1016/j.bamboo.2023.100032
  38. Jian, X., Zhuang, X., Li, B., Xu, X., Wei, Z., Song, Y., & Jiang, E. (2018). Comparison of characterization and adsorption of biochars produced from hydrothermal carbonization and pyrolysis. Environmental Technology & Innovation, 10, 27-35
  39. Ji, Y., Zhang, C., Zhang, X. J., Xie, P. F., Wu, C., & Jiang, L. (2022). A high adsorption capacity bamboo biochar for CO2 capture for low temperature heat utilization. Separation and Purification Technology, 293, 121131, https://doi.org/10.1016/j.seppur.2022.121131
  40. Kalderis, D., Seifi, A., Trang, T. K., Tsubota, T., Anastopoulos, I., Manariotis, I., ... & Khataee, A. (2023). Bamboo-derived adsorbents for environmental remediation: A review of recent progress. Environmental Research, 115533. https://doi.org/10.1016/j.envres.2023.115533
  41. Khaledi, S., Delbari, M., Galavi, H., Bagheri, H., & Chari, M. M. (2023). Effects of biochar particle size, biochar application rate, and moisture content on thermal properties of an unsaturated sandy loam soil. Soil and Tillage Research, 226, 105579. https://doi.org/10.1016/j.still.2022.105579
  42. Kumar, S., Rawat, D., Singh, B., & Khanduri, V. P. (2023). Utilization of bamboo resources and their market value in the western Himalayan region of India. Advances in Bamboo Science, 100019. https://doi.org/10.1016/j.bamboo.2023.100019
  43. Kurniawan, T. A., Othman, M. H. D., Liang, X., Goh, H. H., Gikas, P., Chong, K. K., & Chew, K. W. (2023). Challenges and opportunities for biochar to promote circular economy and carbon neutrality. Journal of environmental management, 332, 117429, https://doi.org/10.1016/j.jenvman.2023.117429
  44. Klüpfel, L., M. Keiluweit, M. Kleber, and M. Sander. 2014. “Redox properties of plant biomass-derived black carbon (biochar).” Environmental Science & Technology, 48:5601–5611, https://doi.org/10.1021/es500906d
  45. Kongnine, D. M., Kpelou, P., Attah, N. G., Kombate, S., Mouzou, E., Djeteli, G., & Napo, K. (2020). Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells. International Journal of Renewable Energy Development, 9(1). https://doi.org/10.14710/ijred.9.1.29-35
  46. Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y. K., ... & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresource technology, 148, 196-201, https://doi.org/10.1016/j.biortech.2013.08.135
  47. Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: science, technology and implementation. Routledge, London, https://doi.org/10.4324/9780203762264
  48. Li, L., Long, A., Fossum, B., & Kaiser, M. (2023). Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis. Soil Use and Management, 39(1), 43-52. https://doi.org/10.1111/sum.12848
  49. Liu, Z., Wang, Z., Chen, H., Cai, T., & Liu, Z. (2021). Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environmental Pollution, 268, 115910. https://doi.org/10.1016/j.envpol.2020.115910
  50. Maneekhat, C., & Khamdaeng, T. (2022). Thermal Characteristics of Anila-type Biochar Kiln. Doctoral dissertation, Maejo University, Chiangmai, http://ir.mju.ac.th/dspace/handle/123456789/1237
  51. Meyer, D. (2009). Biochar - a survey. Special assignment in energy and process engineering. Finland: Tampere University of Technology
  52. Mosisa, F. T., Tibba, G. S., & Bayisa, B. (2019). Biochar production using pyrolysis cook stove from coffee husk, wood working wastes and wastes from bedebe brewery. International Journal of Multidisciplinary Educational Research, 5(3), 178-187. http://ijmer.s3.amazonaws.com/pdf/volume8/volume8-issue5(3)-2019.pdf#page=187
  53. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W., & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128
  54. Nair, R. R., Kißling, P. A., Marchanka, A., Lecinski, J., Turcios, A. E., Shamsuyeva, M., ... & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustainable Environment Research, 33(1), 1-17. https://doi.org/10.1186/s42834-023-00176-9
  55. Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and adaptation strategies for global change, 11, 429-444, https://doi.org/10.1016/B978-0-12-386505-2.00002-X
  56. Ojolo, S. J., Osheku, C. A., & Sobamowo, M. G. (2013). Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle. International Journal of Renewable Energy Development, 2(2), 105-115
  57. Ong, H. C., Yu, K. L., Chen, W. H., Pillejera, M. K., Bi, X., Tran, K. Q., ... & Petrissans, M. (2021). Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renewable and Sustainable Energy Reviews, 152, 111698. https://doi.org/10.1016/j.rser.2021.111698
  58. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S., Oki, M., Adeoye, A. O., & Akinlabi, E. T. (2022). Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. International Journal of Renewable Energy Development, 11(4). https://doi.org/10.14710/ijred.2022.45549
  59. Oram, N. J., van de Voorde, T. F., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Van Groenigen, J. W. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment, 191, 92-98, https://doi.org/10.1016/j.agee.2014.03.031
  60. Pradana, Y. S., & Prasetya, A. (2017, March). Performance evaluation of household pyrolytic stove: Effect of outer air holes condition. In AIP Conference Proceedings (Vol. 1823, No. 1, p. 020069). AIP Publishing LLC, https://doi.org/10.1063/1.4978142
  61. Prakongkep, N., Gilkes, R., Wisawapipat, W., Leksungnoen, P., Kerdchana, C., Inboonchuay, T., ... & Hammecker, C. (2020). Effects of biochar on properties of tropical sandy soils under organic agriculture. Journal of Agricultural Science, 13(1), 1-17. https://dx.doi.org/10.5539/jas.v13n1p1
  62. Panyoyai, N., Petchaihan, L., Wongsiriamnuay, T., Hiransatitporn, B., & Khamdaeng, T. (2019). Simulation of temperature distribution in biochar kiln with different feedstock types. Engineering Access, 5(2), 59-64, https://ph02.tci-thaijo.org/index.php/mijet/article/download/10.14456.mijet.2019.9/10.14456.mijet.2019.9
  63. Petchaihan, L., Panyoyai, N., Khamdaeng, T., & Wongsiriamnuay, T. (2020, March). Test of a modified small-scale biochar kiln. In IOP Conference Series: Earth and Environmental Science (Vol. 463, No. 1, p. 012004). IOP Publishing. https://doi.org/10.1088/1755-1315/463/1/012004
  64. Pinisakul, A., Kruatong, N., Vinitnantharat, S., Wilamas, P., Neamchan, R., Sukkhee, N., ... & Sanghaisuk, S. (2023). Arsenic, Iron, and Manganese Adsorption in Single and Trinary Heavy Metal Solution Systems by Bamboo-Derived Biochars. C, 9(2), 40. https://doi.org/10.3390/c9020040
  65. Qian, S., Zhou, X., Fu, Y., Song, B., Yan, H., Chen, Z., ... & Lai, C. (2023). Biochar-compost as a new option for soil improvement: Application in various problem soils. Science of The Total Environment, 870, 162024. https://doi.org/10.1016/j.scitotenv.2023.162024
  66. Rusch, F., Wastowski, A. D., de Lira, T. S., Moreira, K. C. C. S. R., & de Moraes Lúcio, D. (2023). Description of the component properties of species of bamboo: a review. Biomass Conversion and Biorefinery, 13(3), 2487-2495. https://doi.org/10.1007/s13399-021-01359-3
  67. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Rizkiana, J., & Guan, G. (2022). Synthesis and characterization of hydrochar and bio-oil from hydrothermal carbonization of Sargassum sp. using choline chloride (ChCl) catalyst. International Journal of Renewable Energy Development, 11(2)), 403-412. https://doi.org/10.14710/ijred.2022.42595
  68. Sahoo, S. S., Vijay, V. K., Chandra, R., & Kumar, H. (2021). Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology, 3, 100101, https://doi.org/10.1016/j.clet.2021.100101
  69. Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  70. Sayed, E. T., Olabi, A. G., Shehata, N., Al Radi, M., Muhaisen, O. M., Rodriguez, C., ... & Abdelkareem, M. A. (2022). Application of bio-based electrodes in emerging capacitive deionization technology for desalination and wastewater treatment. Ain Shams Engineering Journal, 102030. https://doi.org/10.1016/j.asej.2022.102030
  71. Sawarkar, A. D., Shrimankar, D. D., Kumar, A., Kumar, A., Singh, E., Singh, L., ... & Kumar, R. (2020). Commercial clustering of sustainable bamboo species in India. Industrial Crops and Products, 154, 112693. https://doi.org/10.1016/j.indcrop.2020.112693
  72. Sawarkar, A. D., Shrimankar, D. D., Kumar, M., Kumar, P., & Singh, L. (2023). Bamboos as a cultivated medicinal grass for industries: A systematic review. Industrial Crops and Products, 203, 117210. https://doi.org/10.1016/j.indcrop.2023.117210
  73. Shen, Q., & Wu, H. (2023). Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: the effects of particle residence time on char properties. Proceedings of the Combustion Institute, 39(3), 3371-3378. https://doi.org/10.1016/j.proci.2022.07.119
  74. Sittioad, C., Tantikul, S., Wongsiriamnuay, T., Khamdaeng, T., Tippayawong, N., & Panyoyai, N. (2022, November). Temperature distribution and properties of biochar from a two-heating-stage kiln. In AIP Conference Proceedings (Vol. 2681, No. 1, p. 020046). AIP Publishing LLC, https://doi.org/10.1063/5.0115161
  75. Smebye, A. B., Sparrevik, M., Schmidt, H. P., & Cornelissen, G. (2017). Life-cycle assessment of biochar production systems in tropical rural areas: Comparing flame curtain kilns to other production methods. Biomass and Bioenergy, 101, 35-43. https://doi.org/10.1016/j.biombioe.2017.04.001
  76. Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. https://doi.org/10.1007/s11157-020-09523-3
  77. Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., ... & Briančin, J. (2018). Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Management, 79, 385-394, https://doi.org/10.1016/j.wasman.2018.08.005
  78. Wang, H., Wang, X., Cui, Y., Xue, Z., & Ba, Y. (2018). Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism. Bioresource technology, 263, 444-449, https://doi.org/10.1016/j.biortech.2018.05.040
  79. Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181(5), 635-643, https://doi.org/10.1002/jpln.201700528
  80. Xu, Z., Liu, Y., Chen, H., Yang, M., & Li, H. (2017). Bamboo-like, oxygen-doped carbon tubes with hierarchical pore structure derived from polymer tubes for supercapacitor applications. Journal of Materials Science, 52, 7781-7793. https://doi.org/10.1007/s10853-017-1064-z
  81. Yablonovitch, E., & Deckman, H. W. (2023). Scalable, economical, and stable sequestration of agricultural fixed carbon. Proceedings of the National Academy of Sciences, 120(16), e2217695120, https://doi.org/10.1073/pnas.2217695120
  82. Yang, K., Yang, J., Jiang, Y., Wu, W., & Lin, D. (2016). Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environmental Pollution, 210, 57-64, https://doi.org/10.1016/j.envpol.2015.12.004
  83. You, X., Wang, X., Sun, R., Liu, Q., Fang, S., Kong, Q., ... & Li, Y. (2023). Hydrochar more effectively mitigated nitrous oxide emissions than pyrochar from a coastal soil of the Yellow River Delta, China. Science of The Total Environment, 858, 159628. https://doi.org/10.1016/j.scitotenv.2022.159628
  84. Zahida, R., Waseem, R., Kanth, R. H., Ashaq, H., Parmeet, S., Pir, F. A., ... & Aijaz, N. (2017). Biochar: A Tool for Mitigating Climate Change-A Review. Chem Sci Rev Lett, 6, 1561-1574. https://chesci.com/wp-content/uploads/2017/08/V6i23_33_CS122048061_Zahida_1561-1574.pdf
  85. Zhang, Y., Chen, F., Chen, D., Cen, K., Zhang, J., & Cao, X. (2020). Upgrading of biomass pellets by torrefaction and its influence on the hydrophobicity, mechanical property, and fuel quality. Biomass Conversion and Biorefinery, 1-10. https://doi.org/10.1007/s13399-020-00666-5
  86. Zhao, R., Wang, X., Liu, L., Li, P., & Tian, L. (2019). Slow pyrolysis characteristics of bamboo subfamily evaluated through kinetics and evolved gases analysis. Bioresource technology, 289, 121674, https://doi.org/10.1016/j.biortech.2019.121674

Last update:

  1. Temporal trends and scholarly impact: a quantitative analysis of bamboo biomass research in Southeast Asia

    M Z Muhamad, M M Mustafa. IOP Conference Series: Earth and Environmental Science, 1397 (1), 2024. doi: 10.1088/1755-1315/1397/1/012018

Last update: 2025-01-22 01:11:52

No citation recorded.