1Hue Industrial College, Thua Thien Hue, Viet Nam
2School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Ha Noi, Viet Nam
3School of Engineering and Technology, Hue University, Thua Thien Hue, Viet Nam
4 Hanoi University of Mining and Geology, Ha Noi, Viet Nam
BibTex Citation Data :
@article{IJRED56569, author = {Thi Hong Nguyen and Quoc Vuong Dang and Xuan Cuong Ngo and Nhu Y Do}, title = {Long-term performance of roof-top GCPV systems in central Viet Nam}, journal = {International Journal of Renewable Energy Development}, volume = {12}, number = {6}, year = {2023}, keywords = {Long-Term performance; roof-top; photovoltaic; tropical monsoon}, abstract = { In pursuit of the objective of achieving \"net zero emissions,\" many countries worldwide, including Viet Nam, have prioritized the utilization of photovoltaic technology for energy conversion. Specifically, the implementation of roof-top grid-connected photovoltaic systems (GCPV) has emerged as a highly efficient solution in urban areas. These systems offer several advantages, such as minimizing land usage, lowering monthly electricity expenses, preventing building heat, generating income for households, and reducing transmission and distribution costs. This article focuses on a comprehensive long-term analysis conducted on 51 roof-top GCPV systems in the tropical monsoon climate of Hue City, Viet Nam, during the period from 2019 to 2023. The analysis findings reveal that roof-top GCPV systems with a capacity of 3-6 kW are well-suited for households in the central region of Viet Nam, characterized by a tropical monsoon climate. These systems exhibit an average sizing ratio of 1.03. The annual average daily final yield peaked at 3.28 kWh/kWp/day in 2021 and reached its lowest point at 2.97 kWh/kWp/day in 2022. Notably, the typical slope of the yield gradually increases with the installed capacity and the studied year. Furthermore, the monthly average daily final yield demonstrates a seasonal pattern, with higher yields observed from March to August and lower yields from September to January, aligning with the climate of the study area. As the years progress, the capacity factor and performance ratio of roof-top GCPV systems display a declining trend. Throughout the entire study period, these systems successfully mitigated 664 metric tons of CO2 emissions. The evaluation of long-term yield data offers valuable insights for photovoltaic installers, operators, and system owners, aiding in system maintenance and optimizing load utilization across different time periods. Long-term performance can be used by energy managers and owners of roof-top GCPV systems to identify supply shortfalls and initiate countermeasures. }, pages = {998--1007} doi = {10.14710/ijred.2023.56569}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/56569} }
Refworks Citation Data :
In pursuit of the objective of achieving "net zero emissions," many countries worldwide, including Viet Nam, have prioritized the utilization of photovoltaic technology for energy conversion. Specifically, the implementation of roof-top grid-connected photovoltaic systems (GCPV) has emerged as a highly efficient solution in urban areas. These systems offer several advantages, such as minimizing land usage, lowering monthly electricity expenses, preventing building heat, generating income for households, and reducing transmission and distribution costs. This article focuses on a comprehensive long-term analysis conducted on 51 roof-top GCPV systems in the tropical monsoon climate of Hue City, Viet Nam, during the period from 2019 to 2023. The analysis findings reveal that roof-top GCPV systems with a capacity of 3-6 kW are well-suited for households in the central region of Viet Nam, characterized by a tropical monsoon climate. These systems exhibit an average sizing ratio of 1.03. The annual average daily final yield peaked at 3.28 kWh/kWp/day in 2021 and reached its lowest point at 2.97 kWh/kWp/day in 2022. Notably, the typical slope of the yield gradually increases with the installed capacity and the studied year. Furthermore, the monthly average daily final yield demonstrates a seasonal pattern, with higher yields observed from March to August and lower yields from September to January, aligning with the climate of the study area. As the years progress, the capacity factor and performance ratio of roof-top GCPV systems display a declining trend. Throughout the entire study period, these systems successfully mitigated 664 metric tons of CO2 emissions. The evaluation of long-term yield data offers valuable insights for photovoltaic installers, operators, and system owners, aiding in system maintenance and optimizing load utilization across different time periods. Long-term performance can be used by energy managers and owners of roof-top GCPV systems to identify supply shortfalls and initiate countermeasures.
Article Metrics:
Last update:
Long-Term Energy Yield Analysis of the Rooftop PV System in Climate Conditions of Poland
Last update: 2024-11-20 18:28:23
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.