skip to main content

Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective

1Department of Chemical and Food Processing, Calvin Institute of Technology, Jl. Industri Blok B14 Kav. 1, Kemayoran, Jakarta Pusat 10610, Indonesia

2Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore

Received: 8 Aug 2023; Revised: 15 Sep 2023; Accepted: 25 Sep 2023; Available online: 1 Oct 2023; Published: 1 Nov 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Ammonia, owing to its carbon-free attributes, stands as a promising alternative for replacing fossil-based fuels. This study investigates the techno-economic and environmental aspects of gray, blue, and green ammonia production in Indonesia. In this regard, a spreadsheet-based decision support system has been developed to analyze the levelized cost of each mode of ammonia production and their cost sensitivity across various parameters. The results of the analysis show a levelized cost of gray ammonia of $297 (USD) per ton, which is strongly affected by natural gas prices and carbon taxation. Blue ammonia emerges as the most stable production option with a levelized cost of $390 per ton, impacted by natural gas prices and the expenses associated with carbon sequestration. On the other hand, the levelized cost of green ammonia varies between $696 to $1,024 per ton and is predominantly influenced by the choice of electrolyzers, the cost of renewable energy sources, and maintenance and operational expenditures. Furthermore, the study reveals that gray and blue ammonia production result in emissions of 2.73 and 0.28 tons of CO2 equivalent per ton of ammonia, respectively, while in-situ carbon emissions from green ammonia can be considered negligible. Overall, this study underscores the potential of implementing green ammonia production utilizing geothermal or hydropower renewable energy resources as viable solutions for decarbonizing the power, industry, and transport sectors in Indonesia. Several policy recommendations aimed at overcoming existing barriers to the development of green ammonia plants in the country are also provided.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
Supplementary information
Subject Supplementary information of Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia
Type Research Results
  Download (588KB)    Indexing metadata
Keywords: Clean ammonia; Zero emission fuels; TEA analysis; Levelized cost of ammonia; Greenhouse gas emissions; Low carbon economy.

Article Metrics:

  1. Abidin, M. Z., Rosdiana, H., and Salomo, R. V. (2020). Tax Incentive Policy for Geothermal Development: A Comparative Analysis in ASEAN. International Journal of Renewable Energy Development, 9(1), 53-62. https://doi.org/10.14710/ijred.9.1.53-62
  2. Adityo, A. (2022). Indonesia's Grand Experiment in Implementing a Fair and Acceptable Carbon Tax. Indonesia Post-Pandemic Outlook: Social Perspectives, 3, 35-55. https://doi.org/10.55981/brin.536
  3. Alfa Laval, Hafnia, Haldor Topsoe, Vestas, and Siemens Gamesa. (2020). Ammonfuel – An Industrial View of Ammonia as a Marine Fuel. https://www.alfalaval.com/industries/marine-transportation/marine/fuel-conditioning/ammonia-as-fuel/
  4. Arnaiz del Pozo, C. and Cloete, S. (2022). Techno-Economic Assessment of Blue and Green Ammonia as Energy Carriers in a Low-Carbon Future. Energy Conversion and Management, 255, 115312. https://doi.org/10.1016/j.enconman.2022.115312
  5. Aziz, M., Wijayanta, A.T., and Nandiyanto. A.B.D. (2020). Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies, 13(12), 3062. https://doi.org/10.3390/en13123062
  6. Black, S., Parry, I., and Zhunussova, K. (2022). Carbon Taxes or Emissions Trading Systems? Instrument Choice and Design. IMF Staff Climate Note 2022/006. https://www.imf.org/-/media/Files/Publications/Staff-Climate-Notes/2022/English/CLNEA2022006.ashx
  7. Bohrani, T.N., and Wang, M. (2019). Role of Solvents in CO₂ Capture Processes: The Review of Selection and Design Methods. Renewable and Sustainable Energy Reviews, 114, 109299. https://doi.org/10.1016/j.rser.2019.109299
  8. Brightling, J.R. (2018). Ammonia and The Fertiliser Industry: The Development of Ammonia at Billingham. Johnson Matthey Technology Review, 62(1), 32-47. https://doi.org/10.1595/205651318X696341
  9. Dias, V., Pochet, M., Contino, F., and Jeanmart, H. (2020). Energy and Economic Costs of Chemical Storage. Frontiers in Mechanical Engineering, 6, 21. https://doi.org/10.3389/fmech.2020.00021
  10. Energy News. (2023). PLN and French Hydrogen Association Collaborate to Develop Green Hydrogen in Indonesia. https://energynews.biz/pln-and-french-hydrogen-association-collaborate-to-develop-green-hydrogen-in-indonesia/
  11. ESDM. (2020). Permen ESDM tentang Tata Cara Penetapan Pengguna dan Harga Gas Bumi Tertentu di Bidang Industri” https://www.esdm.go.id/id/berita-unit/direktorat-jenderal-minyak-dan-gas-bumi/permen-esdm-tentang-tata-cara-penetapan-pengguna-dan-harga-gas-bumi-tertentu-di-bidang-industri
  12. Gambou, F., Guilbert, D., Zasadzinski, M., and Rafaralahy, H. (2022). A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity. Energies, 15(9), 3452. https://doi.org/10.3390/en15093452
  13. Gezerman, A.O. (2021). A Critical Assessment of Green Ammonia Production and Ammonia Production Technologies. Toros Agri & Industry 71, 57-66. https://doi.org/10.15255/KUI.2021.013
  14. Guerra, C.F., Reyes-Bozo, L., Vyhmeister, E., and Caparros. M. (2020). Technical-Economic Analysis for a Green Ammonia Production Plant in Chile and Its Subsequent Transport to Japan. Renewable Energy 157(10), 404-414. https://doi.org/10.1016/j.renene.2020.05.041
  15. Gunawan, D. (2022). Unlocking the Potential of Hydrogen in Indonesia. Indonesia Post-Pandemic Outlook: Strategy Towards Net-Zero Emissions by 2060 from the Renewables and Carbon-Neutral Energy Perspectives 11, 209-235. https://doi.org/10.55981/brin.562.c11
  16. Halim, I., and Srinivasan, R. (2009). A Simulation-Optimization Framework for Efficient CO₂ Capture using Amine Absorption. Chemical Engineering Transactions 18, 273-278. https://doi.org/10.3303/CET0918043
  17. Häring, H.W. (2008). Industrial Gases Processing. München, Germany: Wiley-VCH
  18. IEAGHG. (2017). Techno-Economic Evaluation of Hyco Plant Integrated to Ammonia/Urea or Methanol Production with CCS. https://ieaghg.org/exco_docs/2017-03.pdf
  19. IESR. (2022). Indonesia Energy Transition Outlook 2023. https://iesr.or.id/wp-content/uploads/2022/12/Indonesia-Energy-Transition-Outlook_2023.pdf
  20. IMO. (2018). IMO’s Work to Cut GHG Emissions from Ships. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx
  21. Indexbox. (2022). Oxygen Market Report: Size, Production, Trends and Forecast to 2030. https://www.globenewswire.com/en/news-release/2022/04/12/2420689/0/en/Oxygen-Market-Report-Size-Production-Trends-and-Forecast-to-2030-IndexBox.html
  22. IRENA and AEA. (2022). Innovation outlook: renewable ammonia. International Renewable Energy Agency, Abu Dhabi, Ammonia Energy Association, Brooklyn
  23. IRENA. (2017). Renewable Energy Prospects: Indonesia, a REmap Analysis, International Renewable Energy Agency, Abu Dhabi
  24. IRENA. (2020). Green Hydrogen Cost Reduction: Scaling Up Electrolyzers to Meet the 1.5℃ Climate Goal. International Renewable Energy Agency, Abu Dhabi
  25. Kazulis, V., Vigants, H., Veidenbergs, I., and Blumberga, D. (2018). Biomass and Natural Gas Co-Firing – Evaluation of GHG Emissions. Energy Procedia 147, 558-565. https://doi.org/10.1016/j.egypro.2018.07.071
  26. KBR. (2022). KBR Ammonia Cracking a Technology for Dissociating Ammonia into Hydrogen and Nitrogen. https://www.kbr.com/sites/default/files/2022-09/Ammonia-Cracking-Handout.pdf
  27. Lee, K., Liu, X., Vyawahare, P., Sun, P., Elgowainy, A., and Wanga, M. (2022). Techno-Economic Performances and Life Cycle Greenhouse Gas Emissions of Various Ammonia Production Pathways Including Conventional, Carbon-Capturing, Nuclear-Powered, and Renewable Production. Green Chemistry 24(12), 4830-4844. https://doi.org/10.1039/D2GC00843B
  28. Lin, B., Wiesner, T.F., and Malmali, M. (2020). Performance of a Small-Scale Haber Process: a Techno-Economic Analysis. ACS Sustainable Chemistry & Engineering 8(41),15517-15531. https://pubs.acs.org/doi/10.1021/acssuschemeng.0c04313?goto=supporting-info
  29. Liu, H., Mao, Z., and Li, X. (2023). Analysis of International Shipping Emissions Reduction Policy and China’s Participation. Frontiers in Marine Science 10, 3389. https://doi.org/10.3389/fmars.2023.1093533
  30. Liu, X., Elgowainy, A., and Wang, M. (2020) Life Cycle Energy Use and Greenhouse Gas Emissions of Ammonia Production from Renewable Resources and Industrial By-Products. Green Chemistry 22(17), 5751-5761. https://doi.org/10.1039/D0GC02301A
  31. MacFarlane, D.R., Cherepanov, P.V., Choi, J., Suryanto, B.H.R., Hodgetts, R.Y., Bakker, J.M., Vallana, F.M.F., and Simonov, A.N. (2020). A Roadmap to the Ammonia Economy. Joule 4, 1186–1205. https://doi.org/10.1016/j.joule.2020.04.004
  32. Morgan, E.R., Manwell, J.F., and McGowan, J.G. (2017). Sustainable Ammonia Production from U.S. Offshore Wind Farms: A Techno-Economic Review. ACS Sustainable Chemistry & Engineering 5(11), 9554-9567. https://doi.org/10.1021/acssuschemeng.7b02070
  33. Nayak-Luke, R.M., Bañares-Alcántara, R., and Wilkinson, I. (2018). “Green” Ammonia: Impact of Renewable Energy Intermittency on Plant Sizing and Levelized Cost of Ammonia. Industrial & Engineering Chemistry Research 57(43), 14607-14616. https://doi.org/10.1021/acs.iecr.8b02447
  34. Nayak-Luke, R.M., and Bañares-Alcántara, R. (2020). Techno-Economic Viability of Islanded Green Ammonia as a Carbon-Free Energy Vector and as a Substitute for Conventional Production. Energy & Environmental Science 13(9), 2957-2966. https://doi.org/10.1039/D0EE01707H
  35. Nayak-Luke, R.M., Forbes, C., Cesaro, Z., Banares-Alcantara, R., and Rouwenhorst, K.H.R. (2021). Techno-Economic Aspects of Production, Storage and Distribution of Ammonia. Techno-Economic Challenges of Green Ammonia as an Energy Vector 8, 191-207. https://doi.org/10.1016/B978-0-12-820560-0.00008-4
  36. Nosherwani, S.A., and Neto, R.C. (2021). Techno-Economic Assessment of Commercial Ammonia Synthesis Methods in Coastal Areas of Germany. Journal of Energy Storage 34, 102201. https://doi.org/10.1016/j.est.2020.102201
  37. PAM JAYA. (2021). Annual Report 2021. https://ppid.pamjaya.co.id/assets/laporan/LPE20220928044539899.pdf
  38. Peraturan Presiden Republik Indonesia. (2022). Percepatan Pengembangan Energi Terbarukan untuk Penyediaan Tenaga Listrik. https://peraturan.bpk.go.id/Home/Details/225308/perpres-no-112-tahun-2022
  39. PGAE. (2018). Pressure Swing Adsorption Technical Analysis. https://www.pge.com/pge_global/common/pdfs/for-our-business-partners/ interconnection-renewables/interconnections-renewables/PressureSwingAdsorption_ TechnicalAnalysis.pdf
  40. PT Pupuk Indonesia. (2021). Annual Report PT Pupuk Indonesia. BUMN. https://www.pupuk-indonesia.com/storage/654/6375a37377916_62ba7b7617a23_ 20220531---PTPI-21---FULL---OJK1654040816.pdf
  41. Raksajati, A., Wiley, D., and Ho, M.T. (2013). Reducing the Cost of CO₂ Capture from Flue Gases using Aqueous Chemical Absorption. Industrial & Engineering Chemistry Research 52(47), 16887-16901. https://doi.org/10.1021/ie402185h
  42. Rivarolo, M., Riveros-Godoy, G., Magistri, L., and Massardo, A.F. (2019). Clean Hydrogen and Ammonia Synthesis in Paraguay from the Itaipu 14 GW Hydroelectric Plant. ChemEngineering 3, 87. http://dx.doi.org/10.3390/chemengineering3040087
  43. Rouwenhorst, K.H.R., Travis, A.S., and Lefferts, L. (2022). 1921–2021: A Century of Renewable Ammonia Synthesis. Sustainable Chemistry 3(2), 149-171. https://doi.org/10.3390/suschem3020011
  44. S&P Global. (2023). Interactive: Ammonia Price Chart. https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/051023-interactive-ammonia-price-chart-natural-gas-feedstock-europe-usgc-black-sea
  45. Sandalow, D., Aines, R., Fan, Z., Friedmann, J., McCormick, C., Merz, A., and Scown, C. (2022). Low-Carbon Ammonia Roadmap. ICEF Innovation Roadmap Project
  46. Sazali, N. (2020). Emerging Technologies by Hydrogen: A Review. International Journal of Hydrogen Energy 45(38), 18753-18771. https://doi.org/10.1016/j.ijhydene.2020.05.021
  47. Spatolisano, E., and Pellegrini, L.A. (2021). CO2-Tolerant Cryogenic Nitrogen Rejection Schemes: Analysis of Their Performances. Industrial & Engineering Chemistry Research, 60, 4420-4429. https://dx.doi.org/10.1021/acs.iecr.0c06189?ref=pdf
  48. Schlömer, S., Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, D., Roy, J., Schaeffer, R., Sims, R., Smith, P., and Wiser, R. (2014). Annex III: Technology-Specific Cost and Performance Parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
  49. Change [Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T., and Minx, J.C. (eds.)]. Cambridge University
  50. Press, Cambridge, United Kingdom and New York, NY, USA
  51. The Royal Society. (2020). Ammonia: Zero-Carbon Fertiliser, Fuel, and Energy Store. The Royal Society. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf
  52. Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W.I.F., and Bowen, P.J. (2018). Ammonia for Power. Progress in Energy and Combustion Science 69, 63-102. https://doi.org/10.1016/j.pecs.2018.07.001
  53. World Salaries. (2023). Average Salary in Indonesia for 2023. https://worldsalaries.com/average-salary-in-indonesia
  54. Yanis, M., Zaini, N., Novari, I., Abdullah, F., Dewanto, B. G., Isa, M., Marwan, M., Zainal, M., & Abdurrahman, A. (2023). Monitoring of Heat Flux Energy in the Northernmost Part of Sumatra Volcano Using Landsat 8 and Meteorological Data. International Journal of Renewable Energy Development, 12(1), 55-65. https://doi.org/10.14710/ijred.2023.47048
  55. Yudiartono, Y., Windarta, J., & Adiarso, A. (2023). Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050. International Journal of Renewable Energy Development, 12(2), 419-429. https://doi.org/10.14710/ijred.2023.50361
  56. Yüzbaşıoğlu, A.E., Avşar, C., and Gezerman, A.O. (2022). The Current Situation in the Use of Ammonia as a Sustainable Energy Source and its Industrial Potential. Current Research in Green and Sustainable Chemistry 5, 100307. https://doi.org/10.1016/j.crgsc.2022.100307

Last update:

  1. Promotion effects in ammonia synthesis over ruthenium catalysts: A review

    Hsin-Yu Chen, Shih-Yuan Chen, Yves Ira A. Reyes, Martin Keller, Takehisa Mochizuki, Chien-Neng Liao, Hsin-Yi Tiffany Chen. EnergyChem, 6 (6), 2024. doi: 10.1016/j.enchem.2024.100140
  2. Integrating Marine Renewable Energy with Green Hydrogen Production from Seawater: Feasibility and Future Prospects for Sustainable Energy Development in Indonesia

    Wanda Rulita Sari, Gunawan Gunawan, Kurniawan T. Waskito, Dimas Angga Fakhri Muzhoffar. Journal of Marine Science and Application, 2025. doi: 10.1007/s11804-025-00631-6

Last update: 2025-01-21 13:17:50

No citation recorded.