1Power Dispatching and Control Center, State Grid Jiangsu Electric Power Co. Ltd., Nanjing, China
2Power Dispatching and Control Center, State Grid Taizhou Electric Power Co. Ltd, Taizhou, China
BibTex Citation Data :
@article{IJRED57902, author = {Qiangsheng Dai and Xuesong Huo and Dawei Su and Zhiwei Cui}, title = {Photovoltaic power prediction based on sky images and tokens-to-token vision transformer}, journal = {International Journal of Renewable Energy Development}, volume = {12}, number = {6}, year = {2023}, keywords = {Photovoltaic power prediction; short term prediction; sky image; Deep learning; T2T-ViT}, abstract = { Photovoltaic (PV) power generation has high uncertainties due to the randomness and imbalance nature of solar energy and meteorological parameters. Hence, accurate PV power forecasts are essential in the operation of PV power plants (PVPP) for short-term dispatches and power generation schedules. In this paper, a new deep neural network structure based on vision transformer is proposed to combine sky images and Tokens-To-Token(T2T) for photovoltaic power prediction. The method uses an incremental tokenization module to aggregate neighboring image patches into tokens, which capture the local structural information of the clouds. Then, an efficient T2T-ViT backbone network is used to extract the global attentional relationships of the tokens for power prediction. In order to evaluate the performance of the proposed model, the method was compared with several deep learning architectures such as ResNet and GoogleNet on a dataset collected by the National Renewable Energy Laboratory in Colorado, USA. The results of power prediction were analysed using training loss, prediction error, and linear regression, and they show that the proposed method achieves higher prediction accuracy and lower error compared to the existing methods, especially in short- and ultra-short-term prediction. The paper demonstrates the potential of applying Transformer models to computer vision tasks for renewable energy forecasting. The results show that the proposed method achieves higher prediction accuracy and lower error than several deep learning architectures, such as ResNet and GoogleNet, especially in short- and ultra-short-term prediction. }, pages = {1104--1112} doi = {10.14710/ijred.2023.57902}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/57902} }
Refworks Citation Data :
Photovoltaic (PV) power generation has high uncertainties due to the randomness and imbalance nature of solar energy and meteorological parameters. Hence, accurate PV power forecasts are essential in the operation of PV power plants (PVPP) for short-term dispatches and power generation schedules. In this paper, a new deep neural network structure based on vision transformer is proposed to combine sky images and Tokens-To-Token(T2T) for photovoltaic power prediction. The method uses an incremental tokenization module to aggregate neighboring image patches into tokens, which capture the local structural information of the clouds. Then, an efficient T2T-ViT backbone network is used to extract the global attentional relationships of the tokens for power prediction. In order to evaluate the performance of the proposed model, the method was compared with several deep learning architectures such as ResNet and GoogleNet on a dataset collected by the National Renewable Energy Laboratory in Colorado, USA. The results of power prediction were analysed using training loss, prediction error, and linear regression, and they show that the proposed method achieves higher prediction accuracy and lower error compared to the existing methods, especially in short- and ultra-short-term prediction. The paper demonstrates the potential of applying Transformer models to computer vision tasks for renewable energy forecasting. The results show that the proposed method achieves higher prediction accuracy and lower error than several deep learning architectures, such as ResNet and GoogleNet, especially in short- and ultra-short-term prediction.
Article Metrics:
Last update:
Last update: 2024-11-13 00:41:07
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.