skip to main content

Evaluating the role of operating temperature and residence time in the torrefaction of betel nutshells for solid fuel production

1Institute for innovative learning, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand

2Institute of Energy Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, 10072, Viet Nam

3Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, 10072, Viet Nam

4 Faculty of Architecture and Design, Rajamangala University of Technology Rattanakosin, 96 Phutthamonthon Sai 5 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand

View all affiliations
Received: 17 Aug 2023; Revised: 5 Oct 2023; Accepted: 20 Oct 2023; Available online: 26 Oct 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research addresses the urgent need for sustainable bioenergy alternatives, specifically evaluating betel nutshells as potential replacements for conventional biomass materials like coconut and palm fibers. The objective of the study was to gauge the inherent bioenergy potential of betel nutshells through an investigation of torrefaction under varying conditions, specifically temperatures ranging from 200-300 °C and residence times between 20-60 minutes in an inert environment. In this study, proximate analyses were utilized to investigate essential characteristics including moisture content, volatile matter, ash content, and fixed carbon, while a bomb calorimeter was used to determine their higher heating values. Initial results indicated that untreated betel nutshells had higher heating values and compositional similarities to coconut and palm fibers, highlighting their potential as a bioenergy source. Advanced torrefaction processes, involving increased temperatures and extended residence times, raised the fixed carbon content and reduced moisture in betel nutshells, thereby optimizing their higher heating value. This improvement is attributed to the decomposition of covalent bonds in the biomass structures, leading to the release of volatile compounds and consequent reductions in both oxygen-to-carbon and hydrogen-to-carbon ratios. Remarkably, at an operating temperature of 300 °C and a residence time of 60 minutes, torrefied betel nutshells reached a higher heating value of 25.20 MJ/kg, marking a substantial 31.39 % increase compared to untreated specimens. This study conclusively positions betel nutshells, typically considered agricultural waste, as competitive alternatives to traditional biomass resources in the biofuel industry.

Fulltext View|Download
Keywords: Torrefaction; Torrefied biomass; Betel Nutshells; Higher heating value; Biomass composition

Article Metrics:

  1. Abelha, P., & Kiel, J. (2020). Techno-economic assessment of biomass upgrading by washing and torrefaction. Biomass and Bioenergy, 142, 105751. https://doi.org/10.1016/j.biombioe.2020.105751
  2. Acharjee, T. C., Coronella, C. J., & Vasquez, V. R. (2011). Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource technology, 102(7), 4849-4854. https://doi.org/10.1016/j.biortech.2011.01.018
  3. Akhtar, J., Imran, M., Ali, A. M., Nawaz, Z., Muhammad, A., Butt, R. K., ... & Naeem, H. A. (2021). Torrefaction and thermochemical properties of agriculture residues. Energies, 14(14), 4218. https://doi.org/10.3390/en14144218
  4. Anukam, A., Mamphweli, S., Okoh, O., & Reddy, P. (2017). Influence of torrefaction on the conversion efficiency of the gasification process of sugarcane bagasse. Bioengineering, 4(1), 22. https://doi.org/10.3390/bioengineering4010022
  5. Asonja, A., Desnica, E., & Radovanovic, L. (2017). Energy efficiency analysis of corn cob used as a fuel. Energy Sources, Part B: Economics, Planning, and Policy, 12(1), 1-7. https://doi.org/10.1080/15567249.2014.881931
  6. Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press. https://doi.org/10.1016/B978-0-12-812992-0.00001-7
  7. Batidzirai, B., Mignot, A. P. R., Schakel, W. B., Junginger, H. M., & Faaij, A. P. C. (2013). Biomass torrefaction technology: Techno-economic status and future prospects. Energy, 62, 196-214. https://doi.org/10.1016/j.energy.2013.09.035
  8. Cardona, S., Gallego, L. J., Valencia, V., Martínez, E., & Rios, L. A. (2019). Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments, 31, 17-24. https://doi.org/10.1016/j.seta.2018.11.002
  9. Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., & Lu, M. (2015). Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel, 159, 27-32. https://doi.org/10.1016/j.fuel.2015.06.078
  10. Chen, W. H., Lu, K. M., Liu, S. H., Tsai, C. M., Lee, W. J., & Lin, T. C. (2013). Biomass torrefaction characteristics in inert and oxidative atmospheres at various superficial velocities. Bioresource technology, 146, 152-160. https://doi.org/10.1016/j.biortech.2013.07.064
  11. Chen, W. H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. https://doi.org/10.1016/j.rser.2014.12.039
  12. Chih, Y. K., Chen, W. H., Ong, H. C., & Show, P. L. (2019). Product characteristics of torrefied wood sawdust in normal and vacuum environments. Energies, 12(20), 3844. https://doi.org/10.3390/en12203844
  13. Demirbas, A. (2009). Pyrolysis mechanisms of biomass materials. Energy Sources, Part A, 31(13), 1186-1193. https://doi.org/10.1080/15567030801952268
  14. Di Blasi, C., & Lanzetta, M. (1997). Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. Journal of Analytical and Applied Pyrolysis, 40, 287-303. https://doi.org/10.1016/S0165-2370(97)00028-4
  15. Dirgantara, M., Cahyana, B. T., Suastika, K. G., & Akbar, A. R. (2020). Effect of temperature and residence time torrefaction palm kernel shell on the calorific value and energy yield. In Journal of Physics: Conference Series (Vol. 1428, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1742-6596/1428/1/012010
  16. Garba, M. U., Gambo, S. U., Musa, U., Tauheed, K., Alhassan, M., & Adeniyi, O. D. (2018). Impact of torrefaction on fuel property of tropical biomass feedstocks. Biofuels, 9(3), 369-377. https://doi.org/10.1080/17597269.2016.1271629
  17. Gent, S., Twedt, M., Gerometta, C., & Almberg, E. (2017). Chapter three–fundamental theories of torrefaction by thermochemical conversion. Theoretical and Applied Aspects of Biomass Torrefaction, 2017, 41-75. https://doi.org/10.1016/B978-0-12-809483-9.00003-8
  18. Granados, D. A., Velásquez, H. I., & Chejne, F. (2014). Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy, 74, 181-189. https://doi.org/10.1016/j.energy.2014.05.046
  19. Hoogwijk, M., Faaij, A., Eickhout, B., De Vries, B., & Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225-257. https://doi.org/10.1016/j.biombioe.2005.05.002
  20. Ibitoye, S. E., Jen, T. C., Mahamood, R. M., & Akinlabi, E. T. (2021). Improving the combustion properties of corncob biomass via torrefaction for solid fuel applications. Journal of Composites Science, 5(10), 260; https://doi.org/10.3390/jcs5100260
  21. Jekayinfa, S. O., Orisaleye, J. I., & Pecenka, R. (2020). An assessment of potential resources for biomass energy in Nigeria. Resources, 9(8), 92. https://doi.org/10.3390/resources9080092
  22. Jekayinfa, S. O., Pecenka, R., & Orisaleye, J. I. (2019). Empirical model for prediction of density and water resistance of corn cob briquettes. International Journal of Renewable Energy Technology, 10(3), 212-228. https://doi.org/10.1504/IJRET.2019.101730
  23. Kanwal, S., Munir, S., Chaudhry, N., & Sana, H. (2019). Physicochemical characterization of Thar coal and torrefied corn cob. Energy Exploration & Exploitation, 37(4), 1286-1305. https://doi.org/10.1177/0144598719834766
  24. Kelz, J., Zemann, C., Muschick, D., Krenn, O., Hofmeister, G., Weissinger, A., ... & Hochenauer, C. (2017, June). Evaluation of the combustion behaviour of straw, poplar and maize in a small-scale biomass boiler. In Proceeding of the 25th European Biomass Conference and Exhibition, Stockholm, Sweden (pp. 12-15) https://doi.org/10.5071/25thEUBCE2017-ICO.12.5
  25. Klaas, M., Greenhalf, C., Ouadi, M., Jahangiri, H., Hornung, A., Briens, C., & Berruti, F. (2020). The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results in Engineering, 7, 100165. https://doi.org/10.1016/j.rineng.2020.100165
  26. Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., & Obersteiner, M. (2014). Woody biomass energy potential in 2050. Energy policy, 66, 19-31 https://doi.org/10.1016/j.enpol.2013.11.033
  27. Li, H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., & Sokhansanj, S. (2012). Torrefaction of sawdust in a fluidized bed reactor. Bioresource technology, 103(1), 453-458. https://doi.org/10.1016/j.biortech.2011.10.009
  28. Li, S. X., Chen, C. Z., Li, M. F., & Xiao, X. (2018). Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres. Bioresource technology, 249, 348-353. https://doi.org/10.1016/j.biortech.2017.10.026
  29. Liu, Z., Zhang, T., Zhang, J., Xiang, H., Yang, X., Hu, W., ... & Mi, B. (2018). Ash fusion characteristics of bamboo, wood and coal. Energy, 161, 517-522. https://doi.org/10.1016/j.energy.2018.07.131
  30. Lou, H., He, X., Cai, C., Lan, T., Pang, Y., Zhou, H., & Qiu, X. (2019). Enhancement and mechanism of a lignin amphoteric surfactant on the production of cellulosic ethanol from a high-solid corncob residue. Journal of agricultural and food chemistry, 67(22), 6248-6256. https://doi.org/10.1021/acs.jafc.9b01208
  31. Luo, H., Niedzwiecki, L., Arora, A., Mościcki, K., Pawlak-Kruczek, H., Krochmalny, K., ... & Lu, Z. (2020). Influence of torrefaction and pelletizing of sawdust on the design parameters of a fixed bed gasifier. Energies, 13(11), 3018. https://doi.org/10.3390/en13113018
  32. Lu, J. J., & Chen, W. H. (2013). Product yields and characteristics of corncob waste under various torrefaction atmospheres. Energies, 7(1), 13-27. https://doi.org/10.3390/en7010013
  33. Martínez, L. V., Rubiano, J. E., Figueredo, M., & Gómez, M. F. (2020). Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions. Renewable Energy, 148, 1216-1226 https://doi.org/10.1016/j.renene.2019.10.034
  34. Medic, D., Darr, M., Shah, A., & Rahn, S. (2012). The effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover. Energies, 5(4), 1199-1214. https://doi.org/10.3390/en5041199
  35. Nhuchhen, D. R., Basu, P., & Acharya, B. (2014). A comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels, 2014, 1-56. https://doi.org/10.5171/2014.506376
  36. Ning, S., Jia, S., Ying, H., Sun, Y., Xu, W., & Yin, H. (2018). Hydrogen-rich syngas produced by catalytic steam gasification of corncob char. Biomass and Bioenergy, 117, 131-136. https://doi.org/10.1016/j.biombioe.2018.07.003
  37. Nyakuma, B. B., Wong, S. L., Faizal, H. M., Hambali, H. U., Oladokun, O., & Abdullah, T. A. T. (2020). Carbon dioxide torrefaction of oil palm empty fruit bunches pellets: characterisation and optimisation by response surface methodology. Biomass Conversion and Biorefinery, 1-20. https://doi.org/10.1007/s13399-020-01071-8
  38. Ojolo, S. J., Orisaleye, J. I., & Abolarin, S. M. (2012). Technical potential of biomass energy in Nigeria. Ife Journal of Technology, 21(2), 60-65 https://doi.org/10.1016/j.cles.2022.100043
  39. Oladeji, J. T., & Enweremadu, C. C. (2012). The effects of some processing parameters on physical and densification characteristics of corncob briquettes. International Journal of Energy Engineering, 2(1), 22-27. https://doi.org/10.5923/j.ijee.20120201.04
  40. Orisaleye, J. I., Jekayinfa, S. O., Adebayo, A. O., Ahmed, N. A., & Pecenka, R. (2018). Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(24), 3019-3028. https://doi.org/10.1080/15567036.2018.1516007
  41. Orisaleye, J. I., Jekayinfa, S. O., Ogundare, A. A., Adefuye, O. A., & Bamido, E. (2022). Effect of screen size on particle size distribution and performance of a small-scale design for a combined chopping and milling machine. Cleaner Engineering and Technology, 7, 100426. https://doi.org/10.1016/j.clet.2022.100426
  42. Pahla, G., Mamvura, T. A., & Muzenda, E. (2018). Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering, 25(1), 1-12. https://doi.org/10.1016/j.sajce.2017.11.003
  43. Phanphanich, M., & Mani, S. (2011). Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource technology, 102(2), 1246-1253. https://doi.org/10.1016/j.biortech.2010.08.028
  44. Prins, M. J., Ptasinski, K. J., & Janssen, F. J. (2006). More efficient biomass gasification via torrefaction. Energy, 31(15), 3458-3470. https://doi.org/10.1016/j.energy.2006.03.008
  45. Ramos-Carmona, S., Pérez, J. F., Pelaez-Samaniego, M. R., Barrera, R., & Garcia-Perez, M. (2017). Effect of torrefaction temperature on properties of Patula pine. Maderas. Ciencia y tecnología, 19(1), 39-50. https://doi.org/10.4067/S0718-221X2017005000004
  46. Rodrigues, T. O., & Rousset, P. L. A. (2009). Effects of torrefaction on energy properties of Eucalyptus grandis wood. Cerne, 15(4), 446-452. https://doi.org/10.1016/j.biortech.2010.07.026
  47. Strandberg, M., Olofsson, I., Pommer, L., Wiklund-Lindström, S., Åberg, K., & Nordin, A. (2015). Effects of temperature and residence time on continuous torrefaction of spruce wood. Fuel Processing Technology, 134, 387-398. https://doi.org/10.1016/j.fuproc.2015.02.021
  48. Tian, X., Dai, L., Wang, Y., Zeng, Z., Zhang, S., Jiang, L., & Ruan, R. (2020). Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic. Bioresource Technology, 297, 122490 https://doi.org/10.1016/j.biortech.2019.122490
  49. Tumuluru, J. S., Sokhansanj, S., Wright, C. T., Hess, J. R., & Boardman, R. D. (2011). A review on biomass torrefaction process and product properties. https://doi.org/10.1089/ind.2011.7.384
  50. Tumuluru, J. S. (2015). Comparison of chemical composition and energy property of torrefied switchgrass and corn stover. Frontiers in Energy Research, 3, 46. https://doi.org/10.3389/fenrg.2015.00046
  51. Vamvuka, D., Panagopoulos, G., & Sfakiotakis, S. (2022). Investigating potential co-firing of corn cobs with lignite for energy production. Thermal analysis and behavior of ashes. International Journal of Coal Preparation and Utilization, 42(8), 2493-2504. https://doi.org/10.1080/19392699.2020.1856099
  52. Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A., & Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and bioenergy, 35(9), 3748-3762. https://doi.org/10.1016/j.biombioe.2011.06.023
  53. Wakudkar, H., & Jain, S. (2022). A holistic overview on corn cob biochar: A mini-review. Waste Management & Research, 40(8), 1143-1155. https://doi.org/10.1177/0734242X211069741
  54. Wang, L., Barta-Rajnai, E., Skreiberg, Ø., Khalil, R., Czégény, Z., Jakab, E., ... & Grønli, M. (2018). Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Applied Energy, 227, 137-148. https://doi.org/10.1016/j.apenergy.2017.07.024
  55. Wang, M. J., Huang, Y. F., Chiueh, P. T., Kuan, W. H., & Lo, S. L. (2012). Microwave-induced torrefaction of rice husk and sugarcane residues. Energy, 37(1), 177-184. https://doi.org/10.1016/j.energy.2011.11.053
  56. Wang, Z., Lim, C. J., Grace, J. R., Li, H., & Parise, M. R. (2017). Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor. Bioresource technology, 244, 281-288. https://doi.org/10.1016/j.biortech.2017.07.097
  57. Yang, Y., Qu, X., Huang, G., Ren, S., Dong, L., Sun, T., & Cai, J. (2023). Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction. Renewable Energy, 118941. https://doi.org/10.1016/j.renene.2023.118941
  58. Zhang, C., Yang, W., Chen, W. H., Ho, S. H., Pétrissans, A., & Pétrissans, M. (2022). Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process. Energy, 240, 122470. https://doi.org/10.1016/j.energy.2021.122470
  59. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Wang, X., He, F., & Li, H. (2013). Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresource technology, 128, 370-377. https://doi.org/10.1016/j.biortech.2012.10.067
  60. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., & Li, H. (2015). Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresource technology, 176, 15-22. https://doi.org/10.1016/j.biortech.2014.10.157
  61. Zheng, A., Zhao, Z., Huang, Z., Zhao, K., Wei, G., Wang, X., & Li, H. (2014). Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity. Energy & Fuels, 28(9), 5804-5811. https://doi.org/10.1021/ef500892k
  62. Zou, H., Jiang, Q., Zhu, R., Chen, Y., Sun, T., Li, M., ... & He, Q. (2020). Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance. Journal of environmental management, 254, 109830 https://doi.org/10.1016/j.jenvman.2019.109830
  63. Zych, D. (2008). The viability of corn cobs as a bioenergy feedstock. A report of the West Central Research and Outreach Center, University of Minnesota, 1, 1-25. https://www.academia.edu/8069712/Zych_The_Viability_Of_Corn_Cobs_As_ABioenergy_Feedstock

Last update:

  1. Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

    Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran. International Journal of Green Energy, 21 (12), 2024. doi: 10.1080/15435075.2024.2326076
  2. Waste-to-energy in the civil-construction sector toward the valuation of wood construction residues: Integration of torrefaction process

    Thais Barbosa, Bruno Sant’Anna Chaves, Luiz Gustavo O. Galvão, Giulia Cruz Lamas, Pedro Paulo de Oliveira Rodrigues, Mayara Gabi Moreira, Thiago de Paula Protásio, Sandra M. Luz, Juliana Sabino Rodrigues, Edgar A. Silveira. Fuel, 371 , 2024. doi: 10.1016/j.fuel.2024.132029

Last update: 2024-09-08 13:48:20

No citation recorded.