Thermal Energy Optimization of Building Integrated Semi-Transparent Photovoltaic Thermal Systems

*Ekoe A Akata Aloys Martial  -  Environmental Energy Technologies Laboratory (EETL), University of Yaoundé I,, Cameroon
Donatien Njomo  -  Environmental Energy Technologies Laboratory (EETL), University of Yaoundé I,, Cameroon
Basant Agrawal  -  Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
Published: 15 Jul 2015.
Open Access

Citation Format:
Abstract
Building integrated photovoltaic (BIPV) : The concept where the photovoltaic element assumes the function of power generation and the role of the covering component element has the potential to become one of the principal sources of renewable energy for domestic purpose. In this paper, a Building integrated semitransparent photovoltaic thermal system (BISPVT) system having fins at the back sheet of the photovoltaic module has been simulated. It has been observed that this system produces higher thermal and electrical efficiencies. The increase of wind velocity by fan system and heat exchange surface accelerates the convective heat transfer between the finned surface and the fluid flowing in the duct. The system area of 36.45 m2 is capable of annually producing an amount of thermal energy of 76.66 kWh at an overall thermal efficiency of 56.07 %.

Article Metrics:

  1. Hestnes, AG. (1999) Building Integration of Solar Energy Systems. Solar Energy, 67: 181-187
  2. Ciampi, M., Leccese, F. & Tuoni, G. (2003) Ventilated facades energy performance in summer cooling of buildings. Solar Energy, 75: 491-502
  3. Tonui, J.K. & Tripanagnostopoulos, Y. (2008) Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy, 82: 1-12
  4. Bazilian, M.D. & Prasad, D. (2002) Modelling of a photovoltaic heat recovery system and its role in a design decision support tool for building professionals. Renewable Energy, 27: 57-68
  5. Véronique, D. & Michaël, K. (2014) A novel approach to compare building integrated photovoltaics/thermal air collectors to side-by-side PV modules and solar thermal collectors. Solar Energy, 100: 50–65
  6. Kimura, K. (1994) Photovoltaic systems and architecture. Solar Energy Materials and Solar Cells, 35: 409-419
  7. Taleb, H.M. & Pitts, A.C. (2009) The potential to exploit use of building-integrated photovoltaics in countries of the Gulf Cooperation Council. Renewable Energy, 34: 1092-1099
  8. Zhai, X., Wang, R., Dai, Y., Wu, J. & Ma Q. (2008) Experience on integration of solar thermal technologies with green buildings. Renewable Energy, 33: 1904-1910
  9. Dapeng, L., Gang, L. & Shengming, L. (2015) Solar potential in urban residential buildings. Solar Energy, 111: 225–235
  10. Infield, D., Mei, L. & Eicker, U. (2004) Thermal performance estimation for ventilated PV facades. Solar Energy, 76: 93-98
  11. Tripanagnostopoulos, Y., Nousia, T., Souliotis, M. & Yianoulis, P. (2002) Hybrid photovoltaic/thermal solar systems. Solar Energy, 72: 217-234
  12. Zondag, H., DeVries, D., Van Helden, W., Van Zolingen, R., & Van Steenhoven, A. (2002) The thermal and electrical yield of a PV-thermal collector. Solar Energy, 72: 113-128
  13. Prakash, J. (1994) Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversion and Management, 35: 967-972
  14. Chow, T.T., Hand, J. & Strachan, P. (2003) Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Applied Thermal Engineering, 23: 2035-2049
  15. Avezov, R., Akhatov, J., & Avezova, N. (2011) A Review on Photovoltaic Thermal (PV–T) Air and Water Collectors. Applied Solar Energy, 47(3), 169–183
  16. Tiwari, A., Sodha, MS., Chandra, A. & Joshi, JC. (2006) Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells, 90: 175-189
  17. Khaled, T., Mourad, H. & Ali, M. (2013) Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production. Energy and Buildings, 59: 21–28
  18. Parham, A., Mirzaei, Enrico, P. & Jan, C. (2014) Investigation of the role of cavity airflow on the performance of building-integrated photovoltaic panels. Solar Energy, 107: 510–522
  19. Maturi, L., Lollini, R., Moser, D. & Sparber, W. (2015) Experimental investigation of a low cost passive strategy to improve the performance of Building Integrated Photovoltaic systems. Solar Energy, 111: 288–296
  20. Zondag, H., DeVries, D., Van Helden, W., Van Zolingen, R., & Van Steenhoven, A. (2002) The thermal and electrical yield of a PV-thermal collector. Solar Energy, 72: 113-128
  21. Fung, T. & Yang, H. (2008) Study on thermal performance of semi-transparent building integrated photovoltaic glazings. Energy and Buildings, 40: 341-350
  22. Sarhaddi, F., Farahat, S., Ajam, H., Behzadmehr, A. & Mahdavi, A. (2010) An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy, 87: 2328-2339
  23. F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, “Exergetic optimization of a solar photovoltaic thermal (PV/T) air collector”, International Journal of Energy Research, vol. 35, pp. 813-827, 2011
  24. João, A., Odorico, K., Gustavo, V. & Cezar, M. (2014) Evaluation of the Photovoltaic Generation Potential and Real-Time Analysis of the Photovoltaic Panel Operation on a Building Facade in Southern Brazil”, Energy and building, DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2013.11.007, ENB 4608 PII: S0378-7788(13)00689-0.
  25. Peyvand, S., Rahimi1, M., Parsamoghadam, A. & Masahi, M. (2014) Using a wind-driven ventilator to enhance a photovoltaic cell power generation. Energy and building, DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2013.12.052, ENB 4744, PII: S0378-7788(13)00869-4.
  26. Agrawal, B. & Tiwari, G.N. (2010) Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Applied Energy, 87: 417-426
  27. Agrawal, B. & Tiwari, G.N. (2011) Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Solar Energy, 85: 356-370
  28. Vats, K. & G.N. Tiwari, (2012) Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system. Applied Energy, 96: 409-416
  29. Vats, K. & Tiwari, G.N. (2012) Performance evaluation of a building integrated semitransparent photovoltaic thermal system for roof and façade. Energy and Buildings, 45: 211-218
  30. Dubey, S., Sandhu, G.S. & Tiwari, G.N. (2009) Analytical expression for electrical efficiency of PV/T hybrid air collector. Applied Energy, 86: 697-705
  31. Özışık, N. (1985) Heat transfer: a basic approach. 1st ed, McGraw-Hill,. Çengel, Y.A. (2003) Heat Transfer: A Practical Approach. 2nd ed, McGraw-Hill,
  32. Duffie, J.A. &. Beckman W.A (2013) Solar Engineering of Thermal Processes. 4th ed, Wiley

Last update: 2021-04-23 09:08:40

  1. Semitransparent Building-Integrated Photovoltaic: Review on Energy Performance, Challenges, and Future Potential

    Benedicto Joseph, Tatiana Pogrebnaya, Baraka Kichonge. International Journal of Photoenergy, 127 , 2019. doi: 10.1155/2019/5214150

Last update: 2021-04-23 09:08:40

  1. Semitransparent Building-Integrated Photovoltaic: Review on Energy Performance, Challenges, and Future Potential

    Benedicto Joseph, Tatiana Pogrebnaya, Baraka Kichonge. International Journal of Photoenergy, 127 , 2019. doi: 10.1155/2019/5214150
  2. A key review of building integrated photovoltaic (BIPV) systems

    Biyik E.. Engineering Science and Technology, an International Journal, 20 (3), 2017. doi: 10.1016/j.jestch.2017.01.009
  3. Assessment of Building Integrated Photovoltaic (BIPV) for sustainable energy performance in tropical regions of Cameroon

    Ekoe A Akata A.. Renewable and Sustainable Energy Reviews, 80 , 2017. doi: 10.1016/j.rser.2017.05.155
  4. Effect of the PV position and orientation on energy consumption in a facility

    Elghamry R.. 5th International Conference on Renewable Energy: Generation and Application, ICREGA 2018, 127 , 2018. doi: 10.1109/ICREGA.2018.8337597