skip to main content

Optimization of Chitosan-Carboxymethyl Chitosan Membrane Modification with PVA to Increase Creatinine and Urea Permeation Efficiency

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 25 Mar 2024; Revised: 20 Apr 2024; Accepted: 23 Apr 2024; Published: 30 Apr 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Polyvinyl alcohol (PVA) modified chitosan-carboxymethyl chitosan (CMC) membrane has been successfully fabricated and used as a dialysis membrane. This research aims to examine the manufacturing process, characterization, and dialysis performance of CMC and PVA-modified chitosan membranes. The membrane used the phase inversion method in acetic acid solvent with 5 CS:CMC: PVA dope compositions. Based on FTIR data, the modification process did not produce new spectra. Furthermore, the interaction produces a membrane with higher physical characteristics in terms of porosity, swelling, water uptake, hydrophilicity, and pH resistance values, which increase by 1.5–115%. Meanwhile, chitosan modification makes the membrane structure different from the original, requiring a longer degradation time. The modification also increased the permeation ability of urea by 17–65% and creatinine permeation by 20–62%. Membranes have the ability to be used more than once.
Fulltext View|Download
Keywords: Membrane; Chitosan; Carboxymethyl chitosan; Polyvinyl alcohol; Permeation
Funding: Faculty of Sciences and Mathematics, Diponegoro University under contract 40.E2/UN7.F8/PP/II/2023

Article Metrics:

  1. Edmond Rambod, Masoud Beizai, Moshe Rosenfeld, An experimental and numerical study of the flow and mass transfer in a model of the wearable artificial kidney dialyzer, BioMedical Engineering OnLine, 9, 1, (2010), 21 https://doi.org/10.1186/1475-925X-9-21
  2. Zahra Afsarian, Yaghoub Mansourpanah, Surface and pore modification of tripolyphosphate-crosslinked chitosan/polyethersulfone composite nanofiltration membrane; characterization and performance evaluation, Korean Journal of Chemical Engineering, 35, (2018), 1867-1877 https://doi.org/10.1007/s11814-018-0085-x
  3. Retno Ariadi Lusiana, Dwi Siswanta, Mudasir Mudasir, Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol) Blend Membranes for Creatinine Transport, Indonesian Journal of Chemistry, 16, 2, (2018), 144-150 https://doi.org/10.22146/ijc.21157
  4. Pooria Karami, Behnam Khorshidi, Mick McGregor, John T. Peichel, João B. P. Soares, Mohtada Sadrzadeh, Thermally stable thin film composite polymeric membranes for water treatment: A review, Journal of Cleaner Production, 250, (2020), 119447 https://doi.org/10.1016/j.jclepro.2019.119447
  5. Xi Xu, Yuwei Long, Qing Li, Daikun Li, Daoyong Mao, Xinhong Chen, Yashi Chen, Modified cellulose membrane with good durability for effective oil-in-water emulsion treatment, Journal of Cleaner Production, 211, (2019), 1463-1470 https://doi.org/10.1016/j.jclepro.2018.11.284
  6. M. S. Mohy Eldin, A. E. Hashem, T. M. Tamer, A. M. Omer, M. E. Yossuf, M. M. Sabet, Development of Cross linked Chitosan/Alginate Polyelectrolyte Proton Exchanger Membranes for Fuel Cell Applications, International Journal of Electrochemical Science, 12, 5, (2017), 3840-3858 https://doi.org/10.20964/2017.05.45
  7. R. Jamshidi Gohari, F. Korminouri, W. J. Lau, A. F. Ismail, T. Matsuura, M. N. K. Chowdhury, E. Halakoo, M. S. Jamshidi Gohari, A novel super-hydrophilic PSf/HAO nanocomposite ultrafiltration membrane for efficient separation of oil/water emulsion, Separation and Purification Technology, 150, (2015), 13-20 https://doi.org/10.1016/j.seppur.2015.06.031
  8. Adrian Kaiser, Wendelin J. Stark, Robert N. Grass, Rapid Production of a Porous Cellulose Acetate Membrane for Water Filtration using Readily Available Chemicals, Journal of Chemical Education, 94, 4, (2017), 483-487 https://doi.org/10.1021/acs.jchemed.6b00776
  9. Francesco Galiano, Kelly Briceño, Tiziana Marino, Antonio Molino, Knud Villy Christensen, Alberto Figoli, Advances in biopolymer-based membrane preparation and applications, Journal of Membrane Science, 564, (2018), 562-586 https://doi.org/10.1016/j.memsci.2018.07.059
  10. Retno Ariadi Lusiana, Ginanjar Argo Pambudi, Fitra Nilla Sari, Didik Setiyo Widodo, Khabibi Khabibi, Sri Isdadiyanto, Grafting of Heparin on Blend Membrane of Citric Acid Crosslinked Chitosan/Polyethylene Glycol-Poly Vinyl Alcohol (PVA-PEG), Indonesian Journal of Chemistry, 19, 1, (2019), 151-159 https://doi.org/10.22146/ijc.30861
  11. Yang Liu, Xin Shen, Huan Zhou, Yingjun Wang, Linhong Deng, Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization, Applied Surface Science, 370, (2016), 270-278 https://doi.org/10.1016/j.apsusc.2016.02.124
  12. Khabibi Khabibi, Dwi Siswanta, Mudasir Mudasir, Preparation, Characterization, and In Vitro Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane, Indonesian Journal of Chemistry, 21, 5, (2021), 1120-1131 https://doi.org/10.22146/ijc.61704
  13. E. Bagheripour, A. R. Moghadassi, S. M. Hosseini, B. Van der Bruggen, F. Parvizian, Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement, Journal of Industrial and Engineering Chemistry, 62, (2018), 311-320 https://doi.org/10.1016/j.jiec.2018.01.009
  14. Cynthia Noemi Baeza Elizalde, Samer Al-Gharabli, Joanna Kujawa, Musthafa Mavukkandy, Shadi W. Hasan, Hassan A. Arafat, Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance, Separation and Purification Technology, 190, (2018), 68-76 https://doi.org/10.1016/j.seppur.2017.08.053
  15. Israr Ali, Muhammad Asim Raza, Rashid Mehmood, Atif Islam, Aneela Sabir, Nafisa Gull, Bilal Haider, Sang Hyun Park, Rafi Ullah Khan, Novel Maleic Acid, Crosslinked, Nanofibrous Chitosan/Poly (Vinylpyrrolidone) Membranes for Reverse Osmosis Desalination, International Journal of Molecular Sciences, 21, 19, (2020), 7338 https://doi.org/10.3390/ijms21197338
  16. Chao Feng, Guohui Sun, Zhiguo Wang, Xiaojie Cheng, Hyunjin Park, Dongsu Cha, Ming Kong, Xiguang Chen, Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium, European Journal of Pharmaceutics and Biopharmaceutics, 87, 1, (2014), 197-207 https://doi.org/10.1016/j.ejpb.2013.11.007
  17. Nazrul Islam, Hui Wang, Faheem Maqbool, Vito Ferro, In Vitro Enzymatic Digestibility of Glutaraldehyde-Crosslinked Chitosan Nanoparticles in Lysozyme Solution and Their Applicability in Pulmonary Drug Delivery, Molecules, 24, 7, (2019), 1271 https://doi.org/10.3390/molecules24071271
  18. Adi Darmawan, Anjalya Figo Nur Sabarina, Damar Nurwahyu Bima, Hasan Muhtar, Christina Wahyu Kartikowati, Teguh Endah Saraswati, New design of graphene oxide on macroporous nylon assisted polyvinyl alcohol with Zn(II) cross-linker for pervaporation desalination, Chemical Engineering Research and Design, 195, (2023), 54-64 https://doi.org/10.1016/j.cherd.2023.05.029
  19. A. L. Waly, A. M. Abdelghany, A. E. Tarabiah, Study the structure of selenium modified polyethylene oxide/polyvinyl alcohol (PEO/PVA) polymer blend, Journal of Materials Research and Technology, 14, (2021), 2962-2969 https://doi.org/10.1016/j.jmrt.2021.08.078
  20. Trin Kamjornsupamitr, Thanakorn Sangthumchai, Pranorm Saejueng, Jitapa Sumranjit, Andrew J. Hunt, Surangkhana Budsombat, Composite proton conducting membranes from chitosan, poly(vinyl alcohol) and sulfonic acid-functionalized silica nanoparticles, International Journal of Hydrogen Energy, 46, 2, (2021), 2479-2490 https://doi.org/10.1016/j.ijhydene.2020.10.062
  21. Jueying Yang, Yu Chen, Lin Zhao, Zhipan Feng, Kelin Peng, Ailing Wei, Yalun Wang, Zongrui Tong, Bin Cheng, Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing, Composites Part B: Engineering, 197, (2020), 108139 https://doi.org/10.1016/j.compositesb.2020.108139
  22. D. Anjali Devi, B. Smitha, S. Sridhar, T. M. Aminabhavi, Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes, Journal of Membrane Science, 262, 1-2, (2005), 91-99 https://doi.org/10.1016/j.memsci.2005.03.051
  23. Shujahadeen B. Aziz, Rebar T. Abdulwahid, Mariwan A. Rasheed, Omed Gh. Abdullah, Hameed M. Ahmed, Polymer Blending as a Novel Approach for Tuning the SPR Peaks of Silver Nanoparticles, Polymers, 9, 10, (2017), 486 https://doi.org/10.3390/polym9100486
  24. Ofaira Azhar, Zaib Jahan, Farooq Sher, Muhammad Bilal Khan Niazi, Salik Javed Kakar, Muhammad Shahid, Cellulose acetate-polyvinyl alcohol blend hemodialysis membranes integrated with dialysis performance and high biocompatibility, Materials Science and Engineering: C, 126, (2021), 112127 https://doi.org/10.1016/j.msec.2021.112127
  25. Yazan A. Hussain, Mohammed H. Al-Saleh, Suekainah S. Ar-Ratrout, The effect of active layer non-uniformity on the flux and compaction of TFC membranes, Desalination, 328, (2013), 17-23 https://doi.org/10.1016/j.desal.2013.08.008
  26. Parsaoran Siahaan, Nurwarrohman Andre Sasongko, Retno Ariadi Lusiana, Vivitri Dewi Prasasty, Muhamad Abdulkadir Martoprawiro, The validation of molecular interaction among dimer chitosan with urea and creatinine using density functional theory: In application for hemodyalisis membrane, International Journal of Biological Macromolecules, 168, (2021), 339-349 https://doi.org/10.1016/j.ijbiomac.2020.12.052
  27. MaryTheresa M. Pendergast, Eric M. V. Hoek, A review of water treatment membrane nanotechnologies, Energy & Environmental Science, 4, 6, (2011), 1946-1971 https://doi.org/10.1039/C0EE00541J
  28. Sara Salamzadeh Salmasi, Morteza Ehsani, Mojgan Zandi, Mahdi Saeed, Mike Sabeti, Polysaccharide-based (kappa carrageenan/carboxymethyl chitosan) nanofibrous membrane loaded with antifibrinolytic drug for rapid hemostasis- in vitro and in vivo evaluation, International Journal of Biological Macromolecules, 247, (2023), 125786 https://doi.org/10.1016/j.ijbiomac.2023.125786
  29. Retno Ariadi Lusiana, Dian Tri Pratama, Hasan Muhtar, Facile modification of polyvinylidene fluoride membrane for enhancing dialysis performance: sulfonation, adding polyethylene glycol and tuning coagulation bath temperature, Journal of Macromolecular Science, Part A, 61, 1, (2024), 19-30 https://doi.org/10.1080/10601325.2023.2287044
  30. Kummara Madhusudana Rao, Kuncham Sudhakar, Maduru Suneetha, So Yeon Won, Sung Soo Han, Fungal-derived carboxymethyl chitosan blended with polyvinyl alcohol as membranes for wound dressings, International Journal of Biological Macromolecules, 190, (2021), 792-800 https://doi.org/10.1016/j.ijbiomac.2021.09.034
  31. Hasan Muhtar, Adi Darmawan, Fabrication of negatively charged nanofiltration membrane of modified polystyrene intercalated graphene oxide for pervaporation desalination, Chemical Engineering Journal, 475, (2023), 146095 https://doi.org/10.1016/j.cej.2023.146095
  32. Kavitha Ekambaram, Mohan Doraisamy, Fouling resistant PVDF/Carboxymethyl chitosan composite nanofiltration membranes for humic acid removal, Carbohydrate Polymers, 173, (2017), 431-440 https://doi.org/10.1016/j.carbpol.2017.06.017
  33. S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, M. Beygzadeh, Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles, Desalination, 349, (2014), 145-154 https://doi.org/10.1016/j.desal.2014.07.007
  34. Zhong Ma, Guiming Shu, Xiaolong Lu, Preparation of an antifouling and easy cleaning membrane based on amphiphobic fluorine island structure and chemical cleaning responsiveness, Journal of Membrane Science, 611, (2020), 118403 https://doi.org/10.1016/j.memsci.2020.118403
  35. Patchareepon Jungsinyatam, Pitchayaporn Suwanakood, Sayant Saengsuwan, Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type, Science of The Total Environment, 843, (2022), 157050 https://doi.org/10.1016/j.scitotenv.2022.157050
  36. Haiying Zong, Song Liu, Ronge Xing, Xiaolin Chen, Pengcheng Li, Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium, Ecotoxicology and Environmental Safety, 138, (2017), 271-278 https://doi.org/10.1016/j.ecoenv.2017.01.009
  37. Retno Ariadi Lusiana, Vivi Dia A. Sangkota, Nurwarrohman Andre Sasongko, Gunawan Gunawan, Anugrah Ricky Wijaya, Sri Juari Santosa, Dwi Siswanta, Mudasir Mudasir, Muhammad Nidzhom Zainol Abidin, Sumarni Mansur, Mohd Hafiz Dzarfan Othman, Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating, International Journal of Biological Macromolecules, 152, (2020), 633-644 https://doi.org/10.1016/j.ijbiomac.2020.02.290

Last update:

No citation recorded.

Last update: 2024-06-15 12:54:21

No citation recorded.