skip to main content

Impact of Electric Vehicle Transition Scenarios on Road Transport Emission in Semarang City

*Ningsih Ika Pratiwi orcid scopus  -  Universitas Diponegoro, Indonesia
Suherman Suherman  -  Universitas Diponegoro, Indonesia
Bambang Yulianto  -  Universitas Diponegoro, Indonesia
Muhammad Amin  -  Kanazawa University, Japan

Citation Format:
Abstract
The transition from fossil-fueled vehicles into electric vehicles is considered to be a strategy that can significantly reduce emissions and improve urban air quality. This study aims to examine the impact of the battery electric vehicles growth in Semarang City on carbon emissions within the road transport sector. Projections were made to assess the long-term impact and contribution of this trend towards meeting government targets in 2030 and 2060. Low Emission Analysis Platform (LEAP) software was used to estimate carbon emissions based on amount of vehicle and vehicle kilometer traveled (VKT) data. Three scenarios were set: the BEV scenario, which focuses on the widespread use of electric vehicles, demonstrates a significant reduction, especially in PM10 emissions, highlighting the advantages of transitioning away from internal combustion engine vehicles. The EMX scenario, which emphasizes an energy mix plan to support electricity, does not demonstrate a significant reduction in emissions. The COM scenario, which combine the BEV and EMX scenarios achieves the lowest emissions overall, indicating that a comprehensive strategy is most effective for achieving long-term emission reductions. All scenarios indicate the need for more aggressive policies, technological innovations, and carbon capture strategies to achieve reduction targets, particularly in the road transport sector.
Fulltext View|Download
Keywords: electric vehicle; emission forecast; GWP100; LEAP

Article Metrics:

  1. Alanazi, F., 2023. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Applied Sciences 13
  2. Al-Jabir, M., Isaifan, R.J., 2023. Low Transportation Emission Analysis and Projection Using LEAP: The Case of Qatar. Atmosphere (Basel) 14
  3. Anam, R.K., 2024. Peta Jalan Nasional untuk Elektrifikasi Transportasi Publik Perkotaan Berbasis Jalan. Jakarta
  4. Arief Budihardjo, M., Faadhilah, I., Ghinna Humaira, N., Hadiwidodo, M., Wardhana, I.W., Ramadan, B.S., 2021. Forecasting Greenhouse Gas Emissions from Heavy Vehicles: A Case Study of Semarang City. Jurnal Presipitasi 18, 254–260
  5. Axsen, J., Plötz, P., Wolinetz, M., 2020. Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat Clim Chang 10, 809–818
  6. Board, T.R., of Sciences Engineering, Medicine, 2022. Methods for State DOTs to Reduce Greenhouse Gas Emissions from the Transportation Sector. The National Academies Press, Washington, DC
  7. Bode, S., 2006. Long-term greenhouse gas emission reductions—what’s possible, what’s necessary? Energy Policy 34, 971–974
  8. Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W.W.L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F.E.L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D.C., Roy, J., Ruane, A.C., Skea, J., Shukla, P.R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A.A., Tignor, M., van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F.X., Pachauri, S., Simpson, N.P., Singh, C., Thomas, A., Totin, E., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., van der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., 2023. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland
  9. Coal - IEA [WWW Document], 2023. URL https://www.iea.org/energy-system/fossil-fuels/coal (accessed 8.27.24)
  10. Deloitte, Foundry, 2023. An electric revolution: The rise of Indonesia’s e-motorcycle. Jakarta
  11. Dulău, L.I., 2023. CO2 Emissions of Battery Electric Vehicles and Hydrogen Fuel Cell Vehicles. Clean Technologies 5, 696–712
  12. Erahman, Q.F., Reyseliani, N., Purwanto, W.W., Sudibandriyo, M., 2019. Modeling Future Energy Demand and CO2 Emissions of Passenger Cars in Indonesia at the Provincial Level. Energies (Basel) 12
  13. Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G.S., Friday, A., 2021. The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns 2, 100340
  14. Huu, D.N., Ngoc, V.N., 2021. Analysis study of current transportation status in vietnam’s urban traffic and the transition to electric two-wheelers mobility. Sustainability (Switzerland) 13
  15. IESR, 2020. Indonesia Clean Energy Outlook 2020. Jakarta
  16. IESR, 2023. Indonesia Electric Vehicle Outlook 2023. Jakarta
  17. Indonesia, 2022. Enhanced NDC - Republic of Indonesia | UNFCCC [WWW Document]. URL https://unfccc.int/documents/615082?gclid=CjwKCAjwjaWoBhAmEiwAXz8DBYXk2_HPx5OhSmmVbemV2Uf4yAxaU0W3RhiEVZHI6GOT-Zqc79VybhoC64YQAvD_BwE (accessed 9.20.23)
  18. Indonesia Automotive Team, P., 2023. Indonesia Electric Vehicle Consumer Survey 2023
  19. Kementerian ESDM, 2021. Rencana Usaha Penyediaan Tenaga Listrik PT Perusahaan Listrik Negara (Persero) Tahun 2021 sampai dengan Tahun 2030. Indonesia
  20. Korlantas Polri, 2024. Dashborad ERI [WWW Document]. URL http://rc.korlantas.polri.go.id:8900/eri2017/laprekappolres.php?kdpolda=9&poldanya=JAWA%20TENGAH (accessed 2.14.24)
  21. Kumar, D., Kalghatgi, G., Agarwal, A.K., 2023. Comparison of Economic Viability of Electric and Internal Combustion Engine Vehicles Based on Total Cost of Ownership Analysis. In: Upadhyay, R.K., Sharma, S.K., Kumar, V., Valera, H. (Eds.), Transportation Systems Technology and Integrated Management. Springer Nature Singapore, Singapore, pp. 455–489
  22. Kurokawa, J., Ohara, T., 2020. Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3. Atmos Chem Phys 20, 12761–12793
  23. Mclaren, J., Miller, J., O’shaughnessy, E., Wood, E., Shapiro, E., 2016. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type. Virginia
  24. Moriarty, P., Wang, S.J., 2017. Can Electric Vehicles Deliver Energy and Carbon Reductions? Energy Procedia 105, 2983–2988
  25. Ordonez, J.A., Jakob, M., Steckel, J.C., Fünfgeld, A., 2021. Coal, power and coal-powered politics in Indonesia. Environ Sci Policy 123, 44–57
  26. Poornesh, K., Nivya, K.P., Sireesha, K., 2020. A Comparative study on Electric Vehicle and Internal Combustion Engine Vehicles. In: 2020 International Conference on Smart Electronics and Communication (ICOSEC). pp. 1179–1183
  27. Rahayu, H.G., Kurniati, R., Warsana, H., Purnaweni, H., Sofaniadi, S., 2023. Strategic Policy on Green Transportation in Semarang. pp. 113–118
  28. Rivera-González, L., Bolonio, D., Mazadiego, L.F., Naranjo-Silva, S., Escobar-Segovia, K., 2020. Long-term forecast of energy and fuels demand towards a sustainable road transport sector in Ecuador (2016-2035): A LEAP model application. Sustainability (Switzerland) 12
  29. Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q., 2019. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software 114, 29–39
  30. Sofaniadi, S., Huda, M., Hartawan, F., 2022. Transportasi Berkelanjutan dan Pengaruhnya Terhadap Pengurangan Emisi di Kota Semarang. Jurnal Riptek 16, 81–89
  31. Sukarno, I., Matsumoto, H., Susanti, L., 2016. Transportation energy consumption and emissions - a view from city of Indonesia. Future Cities and Environment 2, 6
  32. Thaheer, H., Ikatrinasari, Z., Hasibuan, S., 2019. Environmental Burden Optimization in Distribution Pathways for Fruit Juice Product of Small Medium Enterprises Industry. International Journal of Engineering and Technology 8, 42–47
  33. UNEP, 2023. Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again). United Nations Environment Programme
  34. United Nations, n.d. Net Zero Coalition | United Nations [WWW Document]. URL https://www.un.org/en/climatechange/net-zero-coalition (accessed 8.28.24)
  35. Veza, I., Asy’ari, M.Z., Idris, M., Epin, V., Rizwanul Fattah, I.M., Spraggon, M., 2023. Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV. Alexandria Engineering Journal 82, 459–467
  36. Wei, F., Walls, W.D., Zheng, X., Li, G., 2023. Evaluating environmental benefits from driving electric vehicles: The case of Shanghai, China. Transp Res D Transp Environ 119, 103749
  37. Zhao, X., Hu, H., Yuan, H., Chu, X., 2023. How does adoption of electric vehicles reduce carbon emissions? Evidence from China. Heliyon 9, e20296

Last update:

No citation recorded.

Last update: 2024-12-03 09:08:54

No citation recorded.