Effect of Devices and Driving Pressures on Energy Requirements and Mass Transfer Coefficient on Microalgae Lipid Extraction Assisted by Hydrodynamic Cavitation

License URL: http://creativecommons.org/licenses/by-sa/4.0
Article Metrics:
- Anwar, M., Rasul, M.G., Ashwath, N., & Nabi, M.D.N. (2019). The potential of utilizing papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia—A review. Energy Reports, 5, 280-297; doi: 10.1016/j.egyr.2019.02.007
- Budiman, A., Ishida, M., (1996). Three-dimensional graphical exergy analysis of a distillation column. Journal Chem. Eng. Japan, 29(4), 662-668; doi: 10.1252/jcej.29.662
- Carpenter, J., George, S., Saharan, V.K., (2017). Low pressure hydrodynamic cavitating device of producing highly stable oil in water emulsion: Effect of geometry and cavitation number. Chem. Eng. Process. Process Intensif. 116, 97–104. doi: 10.1016/j.cep.2017.02.013
- Collet, P., Lardon, L., Hélias, A., Bricout, S., Lombaert-Valot, I., Perrier, B., Lépine, O., Steyer, J.-P., Bernard, O., (2014). Biodiesel from microalgae–Life cycle assessment and recommendations for potential improvements. Renew. Energy 71, 525–533. doi: 10.1016/j.renene.2014.06.009
- Cui, J., Lai, H., Feng, K., Ma, Y., (2018). Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow. Experimental Therm. Fluid Sci. 94, 89–98. doi: 10.1016/j.expthermflusci.2018.02.002
- Daniyanto, Sutijan, Deendarlianto, Budiman, A., (2016). Reaction kinetic of pyrolysis in mechanism of pyrolysis gasification process of dry torrified sugarcane bagasse. ARPN J. Eng. Appl. Sci. 11(16), 9974–9980
- Franc, J.-P., Michel, J.-M., 2005. Fundamentals of Cavitation. Kluwer Academic Publishers, New York
- Giakoumis, E.G., Sarakatsanis, C.K., (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel 222, 574–585; doi: 10.1016/j.fuel.2018.02.187
- Jamilatun, S., Yuliestyan, A., Hadiyanto, H., (2019). Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues, Int. Journal of Renewable Energy Development, 8(2),133-140; doi: 10.14710/ijred.8.2.133-140
- Kusumaningtyas, R.D., Aji, I.N., Hadiyanto, H., Budiman, A., (2016). Application of tin (II) chloride catalyst for high FFA Jatropha oil esterification in continuous reactive distillation column. Bull. Chem. React. Eng. Catal. 11, 66; doi: 10.9767/bcrec.11.1.417.66-74
- Lee, A.K., Lewis, D.M., Ashman, P.J., (2013). Force and energy requirement for microalgal cell disruption: An atomic force microscope evaluation. Bioresour. Technol. 128, 199–206. doi: 10.1016/j.biortech.2012.10.032
- Lee, I., Han, J.I., (2015). Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresour. Technol. 186, 246–251. doi: 10.1016/j.biortech.2015.03.045
- Malekzadeh, M., Abedini Najafabadi, H., Hakim, M., Feilizadeh, M., Vossoughi, M., Rashtchian, D., (2016). Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris. Bioresour. Technol. 201, 304–311. doi: 10.1016/j.biortech.2015.11.066
- Nafis, G.A., Mumpuni, P.Y., Indarto, Budiman, A., (2015). Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction. AIP Conf. Proc. 1699. doi: 10.1063/1.4938306
- Pradana, Y.S., Azmi, F.A., Masruri, W., Hartono, M., (2018). Biodiesel production from wet spirulina sp. By one-step extraction-transesterification. MATEC Web of Conferences. 156, 03009, 1–4; doi.org/10.1051/matecconf/201815603009
- Pradana, Y.S., Sudibyo, H., Suyono, E.A., Indarto, Budiman, A., (2017). Oil algae extraction of selected microalgae species grown in monoculture and mixed cultures for biodiesel production. Energy Procedia, 105, 277–282; doi: 10.1016/j.egypro.2017.03.314
- Saharan, B.S., Sharma, D., Sahu, R., Sahin, O., (2013). Towards algal biofuel production : a concept of green bio energy development. Innov. Rom. Food Biotechnol. 12, 1–21
- Sawitri, D.R., Sutijan, Budiman, A., (2016). Kinetics study of free fatty acids esterification for biodiesel production from palm fatty acid distillate catalysed by sulphated zirconia. ARPN J. Eng. Appl. Sci. 11(16), 9951–9957
- Setyawan, M., Budiman, A., Mulyono, P., Sutijan, (2018a). Optimum extraction of algae-oil from microalgae using hydrodynamic cavitation. Int. J. Renew. Energy Res. 8(1), 451-458
- Setyawan, M., Mulyono, P., Sutijan, Budiman, A., (2018b). Comparison of Nannochloropsis sp . cells disruption between hydrodynamic cavitation and conventional extraction. MATEC Web of Conferences. 154(01023), 1–5. doi: 10.1051/matecconf/201815401023
- Soulayman, S., Ola, D., (2019). Synthesis Parameters of Biodiesel From Frying Oils Wastes. Int. Journal of Renewable Energy Development, 8(1),33-39; doi: 10.14710/ijred.8.1.33-39
- Sovová, H., (2005). Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J. Supercrit. Fluids 33, 35–52. doi: 10.1016/j.supflu.2004.03.005
- Sudibyo, H., Pradana, Y.S., Samudra, T.T., Budiman, A., Indarto, Suyono, E.A., (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia 105, 270–276; doi: 10.1016/j.egypro.2017.03.313
- Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S., (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 55, 909–941. doi: 10.1016/j.rser.2015.11.026
- Sunarno, Rochmadi, Mulyono, P., Aziz, M., Budiman, A., (2018). Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. BioResources 13, 1917–1929. doi: 10.15376/biores.13.1.1917-1929
- Wicakso, D.R., Hidayat, M., Cahyono, R.B., (2018). Effect of temperature on catalytic decomposition of tar using Indonesian iron ore as catalyst. Int. J. Renew. Energy Res. 8(1), 421-427.
- Yamamoto, K., King, P.M., Wu, X., Mason, T.J., Joyce, E.M., (2015). Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason. Sonochem. 24, 165–171. doi: 10.1016/j.ultsonch.2014.11.002
- Yen, H., Hu, I., Chen, C., Ho, S., Lee, D., Chang, J., (2013). Microalgae-based biorefinery – From biofuels to natural products. Bioresour. Technol. 135, 166–174. doi: 10.1016/j.biortech.2012.10.099
Last update: 2021-02-26 06:41:33
Last update: 2021-02-26 06:41:32
License URL: http://creativecommons.org/licenses/by-sa/4.0
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.