Effect of Devices and Driving Pressures on Energy Requirements and Mass Transfer Coefficient on Microalgae Lipid Extraction Assisted by Hydrodynamic Cavitation

Martomo Setyawan scopus  -  Faculty of Industrial Engineering, Ahmad Dahlan University, Jalan Ahmad Yani, Tamanan, Bantul, Yogyakarta, Indonesia
Panut Mulyono  -  Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2 Yogyakarta,, Indonesia
Sutijan Sutijan  -  Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2 Yogyakarta,, Indonesia
Yano Surya Pradana scopus  -  Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2 Yogyakarta,, Indonesia
Laras Prasakti  -  Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2 Yogyakarta,, Indonesia
*Arief Budiman scopus  -  Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada, Sekip K IA, Yogyakarta, Indonesia
Received: 28 Nov 2019; Revised: 8 Jul 2020; Accepted: 24 Aug 2020; Published: 15 Oct 2020; Available online: 27 Aug 2020.
Open Access Copyright (c) 2020 The authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 451 254
Abstract
Previous studies of biodiesel production from microalgae have concluded that microalgal biodiesel is not profitable at an industrial scale due to its excessive energy consumption for lipid extraction. Hydrodynamic cavitation lipid extraction is one of the extraction methods which has lower energy consumption. Thismethod enables a fast extraction rate and low energy consumption for cell disruption. In order to achieve optimum process conditions, several influential parameters, which are cavitation generator geometry and driving pressure, need to be scrutinized. The experimental result showed that the maximum yield was obtained at 5 bar driving pressure. The lowest specific extraction energy was obtained at 4.167 bar driving pressure while using one side concave cavitation generator geometry with the ratio of the reduced cross-sectional area of 0.39. The value of the energy extraction requirement 17.79 kJoule/g lipids is less than the biodiesel heating value, and the value of the volumetric mass transfer coefficient is almost 20 times fold greater than the conventional extraction method, therefore this method is promising to be further developed.
Keywords: Hydrodynamic cavitation; lipid extraction; geometry of cavitator; pressure booster; specific extraction energy

Article Metrics:

  1. Anwar, M., Rasul, M.G., Ashwath, N., & Nabi, M.D.N. (2019). The potential of utilizing papaya seed oil and stone fruit kernel oil as non-edible feedstock for biodiesel production in Australia—A review. Energy Reports, 5, 280-297; doi: 10.1016/j.egyr.2019.02.007
  2. Budiman, A., Ishida, M., (1996). Three-dimensional graphical exergy analysis of a distillation column. Journal Chem. Eng. Japan, 29(4), 662-668; doi: 10.1252/jcej.29.662
  3. Carpenter, J., George, S., Saharan, V.K., (2017). Low pressure hydrodynamic cavitating device of producing highly stable oil in water emulsion: Effect of geometry and cavitation number. Chem. Eng. Process. Process Intensif. 116, 97–104. doi: 10.1016/j.cep.2017.02.013
  4. Collet, P., Lardon, L., Hélias, A., Bricout, S., Lombaert-Valot, I., Perrier, B., Lépine, O., Steyer, J.-P., Bernard, O., (2014). Biodiesel from microalgae–Life cycle assessment and recommendations for potential improvements. Renew. Energy 71, 525–533. doi: 10.1016/j.renene.2014.06.009
  5. Cui, J., Lai, H., Feng, K., Ma, Y., (2018). Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow. Experimental Therm. Fluid Sci. 94, 89–98. doi: 10.1016/j.expthermflusci.2018.02.002
  6. Daniyanto, Sutijan, Deendarlianto, Budiman, A., (2016). Reaction kinetic of pyrolysis in mechanism of pyrolysis gasification process of dry torrified sugarcane bagasse. ARPN J. Eng. Appl. Sci. 11(16), 9974–9980.
  7. Franc, J.-P., Michel, J.-M., 2005. Fundamentals of Cavitation. Kluwer Academic Publishers, New York.
  8. Giakoumis, E.G., Sarakatsanis, C.K., (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel 222, 574–585; doi: 10.1016/j.fuel.2018.02.187
  9. Jamilatun, S., Yuliestyan, A., Hadiyanto, H., (2019). Comparative Analysis Between Pyrolysis Products of Spirulina platensis Biomass and Its Residues, Int. Journal of Renewable Energy Development, 8(2),133-140; doi: 10.14710/ijred.8.2.133-140
  10. Kusumaningtyas, R.D., Aji, I.N., Hadiyanto, H., Budiman, A., (2016). Application of tin (II) chloride catalyst for high FFA Jatropha oil esterification in continuous reactive distillation column. Bull. Chem. React. Eng. Catal. 11, 66; doi: 10.9767/bcrec.11.1.417.66-74
  11. Lee, A.K., Lewis, D.M., Ashman, P.J., (2013). Force and energy requirement for microalgal cell disruption: An atomic force microscope evaluation. Bioresour. Technol. 128, 199–206. doi: 10.1016/j.biortech.2012.10.032
  12. Lee, I., Han, J.I., (2015). Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield. Bioresour. Technol. 186, 246–251. doi: 10.1016/j.biortech.2015.03.045
  13. Malekzadeh, M., Abedini Najafabadi, H., Hakim, M., Feilizadeh, M., Vossoughi, M., Rashtchian, D., (2016). Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris. Bioresour. Technol. 201, 304–311. doi: 10.1016/j.biortech.2015.11.066
  14. Nafis, G.A., Mumpuni, P.Y., Indarto, Budiman, A., (2015). Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction. AIP Conf. Proc. 1699. doi: 10.1063/1.4938306
  15. Pradana, Y.S., Azmi, F.A., Masruri, W., Hartono, M., (2018). Biodiesel production from wet spirulina sp. By one-step extraction-transesterification. MATEC Web of Conferences. 156, 03009, 1–4; doi.org/10.1051/matecconf/201815603009
  16. Pradana, Y.S., Sudibyo, H., Suyono, E.A., Indarto, Budiman, A., (2017). Oil algae extraction of selected microalgae species grown in monoculture and mixed cultures for biodiesel production. Energy Procedia, 105, 277–282; doi: 10.1016/j.egypro.2017.03.314
  17. Saharan, B.S., Sharma, D., Sahu, R., Sahin, O., (2013). Towards algal biofuel production : a concept of green bio energy development. Innov. Rom. Food Biotechnol. 12, 1–21.
  18. Sawitri, D.R., Sutijan, Budiman, A., (2016). Kinetics study of free fatty acids esterification for biodiesel production from palm fatty acid distillate catalysed by sulphated zirconia. ARPN J. Eng. Appl. Sci. 11(16), 9951–9957.
  19. Setyawan, M., Budiman, A., Mulyono, P., Sutijan, (2018a). Optimum extraction of algae-oil from microalgae using hydrodynamic cavitation. Int. J. Renew. Energy Res. 8(1), 451-458.
  20. Setyawan, M., Mulyono, P., Sutijan, Budiman, A., (2018b). Comparison of Nannochloropsis sp . cells disruption between hydrodynamic cavitation and conventional extraction. MATEC Web of Conferences. 154(01023), 1–5. doi: 10.1051/matecconf/201815401023
  21. Soulayman, S., Ola, D., (2019). Synthesis Parameters of Biodiesel From Frying Oils Wastes. Int. Journal of Renewable Energy Development, 8(1),33-39; doi: 10.14710/ijred.8.1.33-39
  22. Sovová, H., (2005). Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J. Supercrit. Fluids 33, 35–52. doi: 10.1016/j.supflu.2004.03.005
  23. Sudibyo, H., Pradana, Y.S., Samudra, T.T., Budiman, A., Indarto, Suyono, E.A., (2017). Study of cultivation under different colors of light and growth kinetic study of Chlorella zofingiensis Dönz for biofuel production. Energy Procedia 105, 270–276; doi: 10.1016/j.egypro.2017.03.313
  24. Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S., (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew. Sustain. Energy Rev. 55, 909–941. doi: 10.1016/j.rser.2015.11.026
  25. Sunarno, Rochmadi, Mulyono, P., Aziz, M., Budiman, A., (2018). Kinetic study of catalytic cracking of bio-oil over silica-alumina catalyst. BioResources 13, 1917–1929. doi: 10.15376/biores.13.1.1917-1929
  26. Wicakso, D.R., Hidayat, M., Cahyono, R.B., (2018). Effect of temperature on catalytic decomposition of tar using Indonesian iron ore as catalyst. Int. J. Renew. Energy Res. 8(1), 421-427..
  27. Yamamoto, K., King, P.M., Wu, X., Mason, T.J., Joyce, E.M., (2015). Effect of ultrasonic frequency and power on the disruption of algal cells. Ultrason. Sonochem. 24, 165–171. doi: 10.1016/j.ultsonch.2014.11.002
  28. Yen, H., Hu, I., Chen, C., Ho, S., Lee, D., Chang, J., (2013). Microalgae-based biorefinery – From biofuels to natural products. Bioresour. Technol. 135, 166–174. doi: 10.1016/j.biortech.2012.10.099

No citation recorded.