Control Strategy of Hybrid AC/DC Microgrid in Standalone Mode


Article Metrics:
- B-C. Jeong, D-H. Shin, J-B. Im, J-Y. Park. Kim, Y-J. (2019). Implementation of Optimal Two-Stage Scheduling of Energy Storage System Based on Big-Data-Driven Forecasting-An Actual Case Study in a Campus Microgrid", Energies, 12(6), 1124. https://doi.org/10.3390/en12061124
- Bourbon, R., Ngueveu, S.U., Roboam, X., Sareni, B., Turpin, C., Hernandez-Torres, D. (2019). Energy management optimi-zation of a smart wind power plant comparing heuristic and linear programming methods. International Journal of Energy Research, International Association for Mathematics and Computers in Simulation, vol. 158, pp 418-43. https://doi.org/10.1016/j.matcom.2018.09.022
- Dehghan Manshadi, S., Khodayar, M. (2016). Decentralized operation framework for hybrid AC/DC microgrid. 2016 North American Power Symposium (NAPS). https://doi.org/10.1109/NAPS.2016.7747902
- Kaushik, R. A., Pindoriya, N. M. (2014). A hybrid AC-DC microgrid: Opportunities & key issues in implementation. 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE). https://doi.org/10.1109/ICGCCEE.2014.6922391
- Kumar Nunna, H. S. V. S., Doolla, S. (2013). Multiagent-Based Distributed-Energy-Resource Management for Intelligent Microgrids. IEEE Transactions on Industrial Electronics, 60(4), 1678-1687. https://doi.org/10.1109/TIE.2012.2193857
- Li P., Zhend, M. (2019). Multi-objective optimal operation of hybrid AC/DC microgrid considering. source-network-load coordination. Journal of Modern Power Systems and Clean Energy. https://doi.org/10.1007/s40565-019-0536-3
- Nejabatkhah, F., Li, Y. W., Tian, H. (2019). Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access, 7, 52295-52318. https://doi.org/10.1109/ACCESS.2019.2912376
- Planas, J., Andreu, J.I., Gárate, I., Martínez de Alegría, E., Ibarra (2015). AC and DC technology in microgrids: A review. Renewable and Sustainable Energy Reviews, 43, 726-749. https://doi.org/10.1016/j.rser.2014.11.067
- Qachchachi, N., Mahmoudi, H., Hasnaoui, A.E. (2016). Smart hybrid AC/DC microgrid: Power management based Petri Nets. 2016 International Conference on Information Technology for Organizations Development (IT4OD). https://doi.org/10.1109/IT4OD.2016.7479320
- Riffonneau, Y., Bacha, S., Barruel, F., Ploix, S. (2011). Optimal Power Flow Management for Grid Connected PV Systems with Batteries. IEEE Transactions on Sustainable Energy, 2(3), 309-320. https://doi.org/10.1109/TSTE.2011.2114901
- Shenai, K., Shah, K. (2011). Smart DC micro-grid for efficient utilization of distributed renewable energy. IEEE 2011 EnergyTech. https://doi.org/10.1109/EnergyTech.2011.5948505
- Teimourzadeh Baboli, P., Bahramara, S., Parsa Moghaddam, M., Haghifam, M.R. (2015). A mixed-integer linear model for optimal operation of hybrid AC-DC microgrid considering Renewable Energy Resources and PHEVs. 2015 IEEE Eindhoven PowerTech. https://doi.org/10.1109/PTC.2015.7232507
- Unamuno, E., Barrena, J.A. (2015) Hybrid ac/dc microgrids - Part I: Review and classification of topologies, Renewable and Sustainable Energy Reviews, 52, 1251-1259. https://doi.org/10.1016/j.rser.2015.07.194
- Wang, Y., Li, Y., Cao, Y., Tan, Y., He, L., Han, J. (2018). Hybrid AC/DC microgrid architecture with comprehensive control strategy for energy management of smart building. International Journal of Electrical Power & Energy Systems, 101, 151-161. https://doi.org/10.1016/j.ijepes.2018.02.048
- Wang, Z., Chen, Y., Mei, S., Huang, S., Xu. Y. (2017). Optimal expansion planning of isolated microgrid with renewable energy resources and controllable loads. IET Renewable Power Generation, vol. 11, pp. 931-940. https://doi.org/10.1049/iet-rpg.2016.0661
- Xiong, L., Peng, W., Poh Chiang, L. (2011). A Hybrid AC/DC Microgrid and Its Coordination Control, IEEE Transactions on smart grid, 2, Issue 2, 278-286. https://doi.org/10.1109/TSG.2011.2116162
- Zahboune, H., Zouggar, S., Krajacic, G., Varbanov, P.S., Elhafyani, M., Ziani, E. (2016). Optimal hybrid renewable energy design in autonomous system using Modified Electric System Cascade Analysis and Homer software. Energy Conversion and Management, 126, 909-922. https://doi.org/10.1016/j.enconman.2016.08.061
Last update: 2021-02-26 09:29:21
Last update: 2021-02-26 09:29:22

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.