- Ahamed, T.S., Anto, S., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2020). Upgrading of bio-oil from thermochemical conversion of various biomass – Mechanism, challenges and opportunities. Fuel, 287, 119329; doi: 10.1016/j.fuel.2020.119329
- Atikah, W.S. (2017). Potensi zeolit alam gunung kidul teraktivasi sebagai media adsorben pewarna tekstil. Arena Tekstil, 32(1), 17-24
- Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51(1–2), 3-22; doi: 10.1016/S0165-2370(99)00005-4
- Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass & Bioenergy, 38, 68–94; doi: 10.1016/j.biombioe.2011.01.048
- Bridgwater, A.V., Meier, D. & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493; doi: 10.1016/S0146-6380(99)00120-5
- Burris, L.E. & Juenger, M.C.G. (2016). The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement and Concrete Research, 79, 185-193; 10.1016/j.cemconres.2015.08.007
- Chiaramonti, D., Oasmaa, A. & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056-1086; doi: 10.1016/j.rser.2005.07.008
- Chukwuneke, J.L., Ewulonu, M.C., Chukwujike, I.C. & Okolie, P.C. (2019). Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon, 5(6), e01790, 1-7; doi: 10.1016/j.heliyon.2019.e01790
- Ciddor, L.A., Bennett, J.A., Hunns, J.A. & Wilson, K. (2015). Catalytic upgrading of bio-oils by esterification. Journal of Chemical Technology & Biotechnology, 90(5), n/a-n/a; doi: 10.1002/jctb.4662
- Fattahi, N., Triantafyllidis, K., Luque, R. & Ramazani, A. (2019). Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts, 9(758), 1-23; doi: 10.3390/catal9090758
- Fauzi, A.H.M., Amin, N.A.S. & Mat, R. (2014). Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study. Applied Energy, 114, 809–818; doi: 10.1016/j.apenergy.2013.10.011
- Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Mahari, W.A.W., Lee, X.Y., Han, C.S., Vo, D.-V. N., Le, Q.V., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S.S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401; doi: 10.1016/j.cej.2020.124401
- Hartanto, D., Yuan, L.S., Sari, S.M., Sugiarso, D., Murwarni, I.K., Ersam, T., Prasetyoko, D. & Nur, H. (2016). The use of the combination of FTIR, pyridine adsorption, 27Al and 29Si MAS NMR to determine the Brönsted and Lewis acidic sites. Jurnal Teknologi, 78(6), 223-228; doi: 10.11113/jt.v78.8821
- Hartati, N.S., Sudarmonowati, E., Fatriasari, W., Hermiati, E., Dwianto, W., Kaida, R., Baba, K. & Hayashi, T. (2010). Wood characteristic of superior Sengon collection and prospect of wood properties improvement through genetic engineering. Wood Research Journal, 1(2),103–107; doi: 10.51850/wrj.2010.1.2.103-107
- Hu, X., Gunawan, R., Mourant, D., Hasan, M.MD., Wu, L., Song, Y., Lievens, C. & Li, C-Z. (2017). Upgrading of bio-oil via acid-catalyzed reactions in alcohols — A mini review. Fuel Processing Technology, 155, 2–19; doi: 10.1016/j.fuproc.2016.08.020
- Hu, X., Gunawan, R., Mourant, D., Lievens, C., Li, X., Zhang, S., Chaiwat, W. & Li, C-Z. (2012). Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. Fuel, 97, 512-522; doi: 10.1016/j.fuel.2012.02.032
- Hu, X., Wu, L., Wang, Y., Mourant, D., Lievens, C., Gunawan, R. & Li, C.-Z. (2012). Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 14, 3087–3098; doi: doi.org/10.1039/C2GC35961H
- Jiang, X.X., Naoko, E. & Zhong, Z.P. (2011). Fuel properties of bio-oil/bio-diesel mixture characterized by TG, FTIR and 1H NMR. Korean Journal of Chemical Engineering, 28, 133–137; doi: 10.1007/s11814-010-0328-y
- Kadarwati, S. & Wahyuni, S. (2015). Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process. International Journal of Renewable Energy Development, 4(1), 32-38; doi: 10.14710/ijred.4.1.32-38
- Kadarwati, S., Hu, X., Gunawan, R., Westerhof, R., Gholizadeh, M. Hasan, M.D.M., & Li, C.-Z. (2017). Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts. Fuel Processing Technology, 155, 261-268; doi: 10.1016/j.fuproc.2016.08.021
- Kadarwati, S., Qurrochman, T., Kurniawan, C., Jumaeri, J. & Kasmui, K. (2020). Feasibility study on the utilization of mahogany (Swietenia macrophylla King) wood as a raw material in the bio-oil production. Journal of Physics Conference Series, 1567, 022029; doi: 10.1088/1742-6596/1567/2/022029
- Kadarwati, S., Rahmawati, F., Rahayu, P.E. & Supardi, K.I. (2013). Kinetics and Mechanism of Ni/Zeolite-Catalyzed Hydrocracking of Palm Oil into Bio-Fuel. Indonesian Journal of Chemistry, 13(1), 77–85; doi: 10.22146/ijc.21330
- Kim, M., DiMaggio, C., Salley, S.O. & Simon, Ng.K.Y. (2012). A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology, 118, 37-42. doi: 10.1016/j.biortech.2012.04.035
- Kunkeler, P.J., Zuurdeeg, B.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C. & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180, 234-244; doi: 10.1006/JCAT.1998.2273
- Liu, Y., Li, Z., Leahy, J.J. & Kwapinski, W. (2015). Catalytically upgrading bio-oil via esterification. Energy & Fuels, 29(6), 3691–3698; doi: 10.1021/acs.energyfuels.5b00163
- Menad, K., Feddag, A. & Rubenis, K. (2016). Synthesis and study of calcination temperature influence on the change of structural properties of the lta zeolite. Rasayan Journal of Chemistry, 9(4), 788–797
- Milina, M., Mitchell, S. & Pérez-Ramírez, J. (2014). Prospectives for bio-oil upgrading via esterification over zeolite catalysts. Catalysis Today, 235, 176-183; doi: 10.1016/j.cattod.2014.02.047
- Mortensen, P.M, Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G. & Jensen, A.D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 407(1–2), 1-19; doi: 10.1016/j.apcata.2011.08.046
- Müller, J.M., Mesquita, G.C., Franco, S.M., Borges, L.D., de Macedo, J.L., Dias, J.A., & Dias, S.C.L. (2014). Solid-state dealumination of zeolites for use as catalysts in alcohol dehydration. Microporous and Mesoporous Material, 204, 50–57; doi: 10.1016/j.micromeso.2014.11.002
- Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S. & Bokade, V.V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460–461, 90-98; doi: 10.1016/j.apcata.2013.04.024
- Osatiashtiani, A., Puértolas, B., Oliveira, C.C.S., Manayil, J.C., Barbero, B., Isaacs, M., Michailof, C., Heracleous, E., Pérez-Ramírez, J., Lee, A.F. & Wilson, K. (2017). On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 7, 331–342; doi: 10.1007/s13399-017-0254-x
- Özşen, A.Y. (2020). Conversion of biomass to organic acids by liquefaction reactions under subcritical conditions. Frontier in Chemistry, 8(24), 1-14; doi: 10.3389/fchem.2020.00024
- Paar, A. (2021). Description of diesel fuel. https://wiki.anton-paar.com/en/diesel-fuel/. Accessed on April 4, 2021
- Papari, S. & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models, Renewable and Sustainable Energy Reviews, 52, 1580-1595; doi: 10.1016/j.rser.2015.07.191
- Phatai, P., Loiha, S., Prayoonpokarach, S. & Wittayakun, J. (2020). Effect of Crystallinity of Zeolite Beta on Physicochemical Properties and Performance of Cobalt Catalysts. Sains Malaysiana, 49(1), 75-84; doi: 10.17576/jsm-2020-4901-09
- Pokorna, E., Postelmans, N., Jenicek, P., Schreurs, S., Carleer, R. & Yperman, (2009). J. Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 88, 1344–1350; doi: 10.1016/j.fuel.2009.02.020
- Prasertpong, P. & Tippayawong, N. (2019). Energy Upgrading of biomass pyrolysis oil model compound via esterification: kinetic study using heteropoly acid. Procedia, 160, 253–259; doi: 10.1016/j.egypro.2019.02.144
- Prasertpong, P., Jaroenkhasemmeesuk, C., Tippayawong, N. & Thanmongkhon, Y. (2017). Characterization of bio-oils from jatropha residues and mixtures of model compounds. Chiang Mai University Journal of Natural Sciences, 16, 135–144; doi: 10.12982/cmujns.2017.0011
- Saputro, D.D., Widayat, W., Saptoadi, H., Grafika, J., & Yogyakarta, N. (2012). Karakterisasi briket dari limbah pengolahan kayu sengon dengan metode cetak panas. Prosiding Seminar Nasional Aplikasi Sains & Teknologi, Period III (November 2012), 394–400
- Serrano, D.P., García, R.A., Linares, M. & Gil, B. (2012). Influence of the calcination treatment on the catalytic properties of hierarchical ZSM-5. Catalysis Today, 179(1), 91-101; doi: 10.1016/j.cattod.2011.06.029
- Sondakh, R.C., Hambali, E. & Indrasti, N.S. (2018). Esterification bio-oil using acid catalyst and ethanol. International Journal of Engineering and Management Research, 8(5), 137-141; doi: 10.31033/ijemr.8.5.15
- Sondakh, R.C., Hambali, E. & Indrasti, N.S. (2019). Improving characteristic of bio-oil by esterification method. IOP Conference Series: Earth and Environmental Science, 230, 012071, 1-6; doi: 10.1088/1755-1315/230/1/012071
- Speight, J.G. (2011). 2‒Production, properties and environmental impact of hydrocarbon fuel conversion. In: Khan, M.R. Advances in Clean Hydrocarbon Fuel Processing. Woodhead Publishing Limited
- Sutrisno, B. & Hidayat, A. (2016). Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts. IOP Conference Series: Materials Science and Engineering, 162, 012014; doi: 10.1088/1757-899X/162/1/012014
- Thitsartarn, W. & Kawi, S. (2011). Transesterification of Oil by Sulfated Zr-Supported Mesoporous Silica. Industrial & Engineering Chemistry Research, 50, 7857-7865; doi: 10.1021/ie1022817
- Várhegyi, G., Antal, M.J., Jakab, E. & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42(1), 73–87; doi: 10.1016/S0165-2370(96)00971-0
- Wang, J-J., Chang, J. & Fan, J. (2010). Catalytic esterification of bio-oil by ion exchange resins. Journal of Fuel Chemistry and Technology, 38(5), 560-564; doi: 10.1016/S1872-5813(10)60045-X
- Wang, Y., Hu, X., Mourant, D., Song, Y., Zhang, L., Lievens, C., Xiang, J. & Li, C-Z. (2013). Evolution of aromatic structures during the reforming of bio-oil: importance of the interactions among bio-oil components. Fuel, 111, 805–812; doi: 10.1016/j.fuel.2013.03.072
- Weerachanchai, P., Tangsathitkulchai, C. & Tangsathitkulchai, M. (2012). Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering, 29(2), 182-189; doi: 10.1007/s11814-011-0161-y
- Wei, Y., Lei, H., Zhu, L., Zhang, X., Yadavalli, G., Liu, Y. & Yan, D. (2015). Oxygen-Containing Fuels from High Acid Water Phase Pyrolysis Bio-Oils by ZSM−5 Catalysis: Kinetic and Mechanism Studies. Energies, 8, 5898-5915; doi: 10.3390/en8065898
- Wu, L., Hu, X., Wang, S., Mourant, D., Song, Y., Li, T. & Li, C.-Z. (2016). Formation of coke during the esterification of pyrolysis bio-oil. RSC Advances, 6, 86485-86493. doi: 10.1039/C6RA14939A
- Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788; doi: 10.1016/j.fuel.2006.12.013
- Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F. & Johan, R.B. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste, in Pyrolysis, M. Samer, IntechOpen, doi: 10.5772/intechopen.69036.Availablefrom:https://www.intechopen.com/books/pyrolysis/pyrolysis-a-sustainable-way-to-generate-energy-from-waste
- Zhang, L., Shen, C. & Liu, R. (2014). GC–MS and FT-IR analysis of the bio-oil with addition of ethyl acetate during storage. Frontiers in Energy Research, 2(3), 1-6; doi: 10.3389/fenrg.2014.00003
- Zhang, Z., Sui, S., Wang, F., Wang, Q. & Pittman Jr., C.U. (2013). Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid. Energies, 6, 4531-4550; doi: 10.3390/en6094531
Last update:
-
Pyrolysis of Palm Fronds Waste into Bio-Oil and Upgrading Process Via Esterification-Hydrodeoxygenation Using Cu–Zn Metal Oxide Catalyst Loaded on Mordenite Zeolite
Ahmad Nasir Pulungan, Ronn Goei, Fauziyah Harahap, Lisnawaty Simatupang, Cicik Suriani, Saharman Gea, Muhammad Irvan Hasibuan, Junifa Layla Sihombing, Alfred Iing Yoong Tok.
Waste and Biomass Valorization,
15 (1),
2024.
doi: 10.1007/s12649-023-02153-0
-
Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate (PFAD) into green diesel
Isalmi Aziz, Purwantiningsih Sugita, Noviyan Darmawan, Adid Adep Dwiatmoko.
South African Journal of Chemical Engineering,
45 ,
2023.
doi: 10.1016/j.sajce.2023.07.002
-
Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst
Isalmi Aziz, Edra Aditya Fhilipia Ardine, Nanda Saridewi, Lisa Adhani.
Jurnal Kimia Sains dan Aplikasi,
24 (7),
2021.
doi: 10.14710/jksa.24.7.222-227
Last update: 2025-03-08 14:56:28
No citation recorded.
Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.