skip to main content

Esterification of Bio-Oil Produced from Sengon (Paraserianthes falcataria) Wood Using Indonesian Natural Zeolites

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Indonesia

Received: 10 Jan 2021; Revised: 24 Apr 2021; Accepted: 30 Apr 2021; Available online: 10 May 2021; Published: 1 Nov 2021.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The bio-oil produced from pyrolysis of woody biomass typically shows unfavourable characteristics such as high acidity, hence it becomes highly corrosive. An upgrading process, e.g., esterification, is necessary to improve the bio-oil quality prior to its use as a transportation fuel. In this work, the bio-oil was produced through a fast pyrolysis of Sengon wood in a fixed-bed pyrolyser at various temperatures. The characteristics (density, viscosity, total acid number, relative concentration of acetic acid, etc.) of the bio-oil were evaluated. The bio-oil with the highest acidity underwent an esterification catalysed by Indonesian natural zeolites at 70 oC for 0-180 min with a ratio of bio-oil to methanol of 1:3. The catalytic performance of the Indonesian natural zeolites during the esterification was investigated. A significant decrease in the total acid number in the bio-oil was observed, indicating the zeolite catalyst’s good performance. No significant coke formation (0.002-3.704 wt.%) was obtained during the esterification. An interesting phenomenon was observed; a significant decrease in the total acid number was found in the heating up of the bio-oil in the presence of the catalyst but in the absence of methanol. Possibly, other reactions catalysed by the Brønsted and Lewis acids at the zeolite catalyst surface also occurred during the esterification.

Fulltext View|Download
Keywords: esterification; Sengon; bio-oil; Indonesian natural zeolite
Funding: Universitas Negeri Semarang

Article Metrics:

  1. Ahamed, T.S., Anto, S., Mathimani, T., Brindhadevi, K. & Pugazhendhi, A. (2020). Upgrading of bio-oil from thermochemical conversion of various biomass – Mechanism, challenges and opportunities. Fuel, 287, 119329; doi: 10.1016/j.fuel.2020.119329
  2. Atikah, W.S. (2017). Potensi zeolit alam gunung kidul teraktivasi sebagai media adsorben pewarna tekstil. Arena Tekstil, 32(1), 17-24
  3. Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51(1–2), 3-22; doi: 10.1016/S0165-2370(99)00005-4
  4. Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass & Bioenergy, 38, 68–94; doi: 10.1016/j.biombioe.2011.01.048
  5. Bridgwater, A.V., Meier, D. & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479-1493; doi: 10.1016/S0146-6380(99)00120-5
  6. Burris, L.E. & Juenger, M.C.G. (2016). The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement and Concrete Research, 79, 185-193; 10.1016/j.cemconres.2015.08.007
  7. Chiaramonti, D., Oasmaa, A. & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable and Sustainable Energy Reviews, 11(6), 1056-1086; doi: 10.1016/j.rser.2005.07.008
  8. Chukwuneke, J.L., Ewulonu, M.C., Chukwujike, I.C. & Okolie, P.C. (2019). Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon, 5(6), e01790, 1-7; doi: 10.1016/j.heliyon.2019.e01790
  9. Ciddor, L.A., Bennett, J.A., Hunns, J.A. & Wilson, K. (2015). Catalytic upgrading of bio-oils by esterification. Journal of Chemical Technology & Biotechnology, 90(5), n/a-n/a; doi: 10.1002/jctb.4662
  10. Fattahi, N., Triantafyllidis, K., Luque, R. & Ramazani, A. (2019). Zeolite-Based Catalysts: A Valuable Approach toward Ester Bond Formation. Catalysts, 9(758), 1-23; doi: 10.3390/catal9090758
  11. Fauzi, A.H.M., Amin, N.A.S. & Mat, R. (2014). Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study. Applied Energy, 114, 809–818; doi: 10.1016/j.apenergy.2013.10.011
  12. Foong, S.Y., Liew, R.K., Yang, Y., Cheng, Y.W., Yek, P.N.Y., Mahari, W.A.W., Lee, X.Y., Han, C.S., Vo, D.-V. N., Le, Q.V., Aghbashlo, M., Tabatabaei, M., Sonne, C., Peng, W., & Lam, S.S. (2020). Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chemical Engineering Journal, 389, 124401; doi: 10.1016/j.cej.2020.124401
  13. Hartanto, D., Yuan, L.S., Sari, S.M., Sugiarso, D., Murwarni, I.K., Ersam, T., Prasetyoko, D. & Nur, H. (2016). The use of the combination of FTIR, pyridine adsorption, 27Al and 29Si MAS NMR to determine the Brönsted and Lewis acidic sites. Jurnal Teknologi, 78(6), 223-228; doi: 10.11113/jt.v78.8821
  14. Hartati, N.S., Sudarmonowati, E., Fatriasari, W., Hermiati, E., Dwianto, W., Kaida, R., Baba, K. & Hayashi, T. (2010). Wood characteristic of superior Sengon collection and prospect of wood properties improvement through genetic engineering. Wood Research Journal, 1(2),103–107; doi: 10.51850/wrj.2010.1.2.103-107
  15. Hu, X., Gunawan, R., Mourant, D., Hasan, M.MD., Wu, L., Song, Y., Lievens, C. & Li, C-Z. (2017). Upgrading of bio-oil via acid-catalyzed reactions in alcohols — A mini review. Fuel Processing Technology, 155, 2–19; doi: 10.1016/j.fuproc.2016.08.020
  16. Hu, X., Gunawan, R., Mourant, D., Lievens, C., Li, X., Zhang, S., Chaiwat, W. & Li, C-Z. (2012). Acid-catalysed reactions between methanol and the bio-oil from the fast pyrolysis of mallee bark. Fuel, 97, 512-522; doi: 10.1016/j.fuel.2012.02.032
  17. Hu, X., Wu, L., Wang, Y., Mourant, D., Lievens, C., Gunawan, R. & Li, C.-Z. (2012). Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 14, 3087–3098; doi:
  18. Jiang, X.X., Naoko, E. & Zhong, Z.P. (2011). Fuel properties of bio-oil/bio-diesel mixture characterized by TG, FTIR and 1H NMR. Korean Journal of Chemical Engineering, 28, 133–137; doi: 10.1007/s11814-010-0328-y
  19. Kadarwati, S. & Wahyuni, S. (2015). Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process. International Journal of Renewable Energy Development, 4(1), 32-38; doi: 10.14710/ijred.4.1.32-38
  20. Kadarwati, S., Hu, X., Gunawan, R., Westerhof, R., Gholizadeh, M. Hasan, M.D.M., & Li, C.-Z. (2017). Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts. Fuel Processing Technology, 155, 261-268; doi: 10.1016/j.fuproc.2016.08.021
  21. Kadarwati, S., Qurrochman, T., Kurniawan, C., Jumaeri, J. & Kasmui, K. (2020). Feasibility study on the utilization of mahogany (Swietenia macrophylla King) wood as a raw material in the bio-oil production. Journal of Physics Conference Series, 1567, 022029; doi: 10.1088/1742-6596/1567/2/022029
  22. Kadarwati, S., Rahmawati, F., Rahayu, P.E. & Supardi, K.I. (2013). Kinetics and Mechanism of Ni/Zeolite-Catalyzed Hydrocracking of Palm Oil into Bio-Fuel. Indonesian Journal of Chemistry, 13(1), 77–85; doi: 10.22146/ijc.21330
  23. Kim, M., DiMaggio, C., Salley, S.O. & Simon, Ng.K.Y. (2012). A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology, 118, 37-42. doi: 10.1016/j.biortech.2012.04.035
  24. Kunkeler, P.J., Zuurdeeg, B.J., van der Waal, J.C., van Bokhoven, J.A., Koningsberger, D.C. & van Bekkum, H. (1998). Zeolite Beta: The Relationship between Calcination Procedure, Aluminum Configuration, and Lewis Acidity. Journal of Catalysis, 180, 234-244; doi: 10.1006/JCAT.1998.2273
  25. Liu, Y., Li, Z., Leahy, J.J. & Kwapinski, W. (2015). Catalytically upgrading bio-oil via esterification. Energy & Fuels, 29(6), 3691–3698; doi: 10.1021/acs.energyfuels.5b00163
  26. Menad, K., Feddag, A. & Rubenis, K. (2016). Synthesis and study of calcination temperature influence on the change of structural properties of the lta zeolite. Rasayan Journal of Chemistry, 9(4), 788–797
  27. Milina, M., Mitchell, S. & Pérez-Ramírez, J. (2014). Prospectives for bio-oil upgrading via esterification over zeolite catalysts. Catalysis Today, 235, 176-183; doi: 10.1016/j.cattod.2014.02.047
  28. Mortensen, P.M, Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G. & Jensen, A.D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 407(1–2), 1-19; doi: 10.1016/j.apcata.2011.08.046
  29. Müller, J.M., Mesquita, G.C., Franco, S.M., Borges, L.D., de Macedo, J.L., Dias, J.A., & Dias, S.C.L. (2014). Solid-state dealumination of zeolites for use as catalysts in alcohol dehydration. Microporous and Mesoporous Material, 204, 50–57; doi: 10.1016/j.micromeso.2014.11.002
  30. Nandiwale, K.Y., Sonar, S.K., Niphadkar, P.S., Joshi, P.N., Deshpande, S.S., Patil, V.S. & Bokade, V.V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460–461, 90-98; doi: 10.1016/j.apcata.2013.04.024
  31. Osatiashtiani, A., Puértolas, B., Oliveira, C.C.S., Manayil, J.C., Barbero, B., Isaacs, M., Michailof, C., Heracleous, E., Pérez-Ramírez, J., Lee, A.F. & Wilson, K. (2017). On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 7, 331–342; doi: 10.1007/s13399-017-0254-x
  32. Özşen, A.Y. (2020). Conversion of biomass to organic acids by liquefaction reactions under subcritical conditions. Frontier in Chemistry, 8(24), 1-14; doi: 10.3389/fchem.2020.00024
  33. Paar, A. (2021). Description of diesel fuel. Accessed on April 4, 2021
  34. Papari, S. & Hawboldt, K. (2015). A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models, Renewable and Sustainable Energy Reviews, 52, 1580-1595; doi: 10.1016/j.rser.2015.07.191
  35. Phatai, P., Loiha, S., Prayoonpokarach, S. & Wittayakun, J. (2020). Effect of Crystallinity of Zeolite Beta on Physicochemical Properties and Performance of Cobalt Catalysts. Sains Malaysiana, 49(1), 75-84; doi: 10.17576/jsm-2020-4901-09
  36. Pokorna, E., Postelmans, N., Jenicek, P., Schreurs, S., Carleer, R. & Yperman, (2009). J. Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 88, 1344–1350; doi: 10.1016/j.fuel.2009.02.020
  37. Prasertpong, P. & Tippayawong, N. (2019). Energy Upgrading of biomass pyrolysis oil model compound via esterification: kinetic study using heteropoly acid. Procedia, 160, 253–259; doi: 10.1016/j.egypro.2019.02.144
  38. Prasertpong, P., Jaroenkhasemmeesuk, C., Tippayawong, N. & Thanmongkhon, Y. (2017). Characterization of bio-oils from jatropha residues and mixtures of model compounds. Chiang Mai University Journal of Natural Sciences, 16, 135–144; doi: 10.12982/cmujns.2017.0011
  39. Saputro, D.D., Widayat, W., Saptoadi, H., Grafika, J., & Yogyakarta, N. (2012). Karakterisasi briket dari limbah pengolahan kayu sengon dengan metode cetak panas. Prosiding Seminar Nasional Aplikasi Sains & Teknologi, Period III (November 2012), 394–400
  40. Serrano, D.P., García, R.A., Linares, M. & Gil, B. (2012). Influence of the calcination treatment on the catalytic properties of hierarchical ZSM-5. Catalysis Today, 179(1), 91-101; doi: 10.1016/j.cattod.2011.06.029
  41. Sondakh, R.C., Hambali, E. & Indrasti, N.S. (2018). Esterification bio-oil using acid catalyst and ethanol. International Journal of Engineering and Management Research, 8(5), 137-141; doi: 10.31033/ijemr.8.5.15
  42. Sondakh, R.C., Hambali, E. & Indrasti, N.S. (2019). Improving characteristic of bio-oil by esterification method. IOP Conference Series: Earth and Environmental Science, 230, 012071, 1-6; doi: 10.1088/1755-1315/230/1/012071
  43. Speight, J.G. (2011). 2‒Production, properties and environmental impact of hydrocarbon fuel conversion. In: Khan, M.R. Advances in Clean Hydrocarbon Fuel Processing. Woodhead Publishing Limited
  44. Sutrisno, B. & Hidayat, A. (2016). Upgrading of bio-oil from the pyrolysis of biomass over the rice husk ash catalysts. IOP Conference Series: Materials Science and Engineering, 162, 012014; doi: 10.1088/1757-899X/162/1/012014
  45. Thitsartarn, W. & Kawi, S. (2011). Transesterification of Oil by Sulfated Zr-Supported Mesoporous Silica. Industrial & Engineering Chemistry Research, 50, 7857-7865; doi: 10.1021/ie1022817
  46. Várhegyi, G., Antal, M.J., Jakab, E. & Szabó, P. (1997). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42(1), 73–87; doi: 10.1016/S0165-2370(96)00971-0
  47. Wang, J-J., Chang, J. & Fan, J. (2010). Catalytic esterification of bio-oil by ion exchange resins. Journal of Fuel Chemistry and Technology, 38(5), 560-564; doi: 10.1016/S1872-5813(10)60045-X
  48. Wang, Y., Hu, X., Mourant, D., Song, Y., Zhang, L., Lievens, C., Xiang, J. & Li, C-Z. (2013). Evolution of aromatic structures during the reforming of bio-oil: importance of the interactions among bio-oil components. Fuel, 111, 805–812; doi: 10.1016/j.fuel.2013.03.072
  49. Weerachanchai, P., Tangsathitkulchai, C. & Tangsathitkulchai, M. (2012). Effect of reaction conditions on the catalytic esterification of bio-oil. Korean Journal of Chemical Engineering, 29(2), 182-189; doi: 10.1007/s11814-011-0161-y
  50. Wei, Y., Lei, H., Zhu, L., Zhang, X., Yadavalli, G., Liu, Y. & Yan, D. (2015). Oxygen-Containing Fuels from High Acid Water Phase Pyrolysis Bio-Oils by ZSM−5 Catalysis: Kinetic and Mechanism Studies. Energies, 8, 5898-5915; doi: 10.3390/en8065898
  51. Wu, L., Hu, X., Wang, S., Mourant, D., Song, Y., Li, T. & Li, C.-Z. (2016). Formation of coke during the esterification of pyrolysis bio-oil. RSC Advances, 6, 86485-86493. doi: 10.1039/C6RA14939A
  52. Yang, H., Yan, R., Chen, H., Lee, D.H. & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788; doi: 10.1016/j.fuel.2006.12.013
  53. Zaman, C.Z., Pal, K., Yehye, W.A., Sagadevan, S., Shah, S.T., Adebisi, G.A., Marliana, E., Rafique, R.F. & Johan, R.B. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste, in Pyrolysis, M. Samer, IntechOpen, doi: 10.5772/intechopen.69036.Availablefrom:
  54. Zhang, L., Shen, C. & Liu, R. (2014). GC–MS and FT-IR analysis of the bio-oil with addition of ethyl acetate during storage. Frontiers in Energy Research, 2(3), 1-6; doi: 10.3389/fenrg.2014.00003
  55. Zhang, Z., Sui, S., Wang, F., Wang, Q. & Pittman Jr., C.U. (2013). Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid. Energies, 6, 4531-4550; doi: 10.3390/en6094531

Last update:

  1. Pyrolysis of Palm Fronds Waste into Bio-Oil and Upgrading Process Via Esterification-Hydrodeoxygenation Using Cu–Zn Metal Oxide Catalyst Loaded on Mordenite Zeolite

    Ahmad Nasir Pulungan, Ronn Goei, Fauziyah Harahap, Lisnawaty Simatupang, Cicik Suriani, Saharman Gea, Muhammad Irvan Hasibuan, Junifa Layla Sihombing, Alfred Iing Yoong Tok. Waste and Biomass Valorization, 15 (1), 2024. doi: 10.1007/s12649-023-02153-0
  2. Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate (PFAD) into green diesel

    Isalmi Aziz, Purwantiningsih Sugita, Noviyan Darmawan, Adid Adep Dwiatmoko. South African Journal of Chemical Engineering, 45 , 2023. doi: 10.1016/j.sajce.2023.07.002
  3. Catalytic Cracking of Crude Biodiesel into Biohydrocarbon Using Natural Zeolite Impregnated Nickel Oxide Catalyst

    Isalmi Aziz, Edra Aditya Fhilipia Ardine, Nanda Saridewi, Lisa Adhani. Jurnal Kimia Sains dan Aplikasi, 24 (7), 2021. doi: 10.14710/jksa.24.7.222-227

Last update: 2024-07-18 11:42:34

No citation recorded.