skip to main content

Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields

1Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria

2Department of Mechanical Engineering, Bells University of Technology, Ota, Ogun State, Nigeria

3Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado, Ekiti State, Nigeria

4 Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg, 2028, South Africa

5 Directorate of Pan African Universities for Life and Earth Institute, PMB 20, Ibadan, Oyo State, Nigeria

6 Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, South Africa

View all affiliations
Received: 2 Apr 2022; Revised: 2 Jun 2022; Accepted: 28 Jun 2022; Available online: 3 Jul 2022; Published: 1 Nov 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

This study deals with a preliminary investigation of biomass samples' physicochemical, structural composition, and thermal properties to aid the appropriate selection of biomass utilized for pyrolysis operation. The proximate, ultimate, structural composition and thermal analyses were conducted using seven lignocellulose biomass samples obtained in Ajase market, Ajasse Ipo, Kwara State, Nigeria, and Omu-Aran, Kwara State, Nigeria. Results showed that the average moisture contents (MC) ranged from 0.12 to 0.44%, and volatile matter (VM) ranged from 73.70 to 83.82%. Fixed carbon (FC) varied from 12.79 to 22.80%, and Ash contents varied between 01.20 to 5.52%. Similarly, the average carbon contents ranged from 45.11 to 50.00%. Hydrogen contents ranged from 5.38 to 6.15%, nitrogen contents varied between 0.20 to 1.24%, and oxygen contents from 43.79 to 48.51%. Also, sulphur contents varied between 0.01 to 0.19%, while the biomass species' average cellulose, hemicellulose, and lignin contents ranged from 28.34 to 45.80%, 25.83 to 34.01%, and 21.96 to 49.63% respectively. The high percentage of VM, C, H, HHV, ignitability index, cellulose, and hemicellulose content recorded in the biomass samples would enhance devolatilization reactivity, ignitability, and burn gases in the reactor, as well as a good production of hydrocarbons content during the pyrolysis process. Also, the low ash content would prevent harmful chemical deposits in the reactor during the pyrolysis process. It can be deduced that shea butter wood was best suited for biofuel generation, closely followed by sugarcane bagasse and palm kernel shell. At the same time, corn cobs possessed the least properties for the pyrolysis process.

Fulltext View|Download
Keywords: Lignocellulose biomass; Proximate analysis; Ultimate analysis; Structural composition; Heating value; Thermal properties

Article Metrics:

  1. Acevedo, J. C., Solano, S. P., Durán, J. M., Posso, F. R., & Arenas, E. (2019). Estimation of potential hydrogen production from palm kernel shell in Norte de Santander, Colombia. Journal of Physics: Conference Series 1386, (2019). doi: 10.1088/1742-6596/1386/1/0120931
  2. Adeleke, A.A., Odusote, J.K., Ikubanni, P.P.., Lasode, O.A., Malathi, M., & Paswan, D. (2020). The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass. Heliyon, 6 (2020).
  3. Akinola, A. O., & Fapetu, O. P. (2015). Characteristics Study of Wood Wastes from Sawmills. British Journal of Applied Science & Technology, 6(6), 606-612.
  4. Akintola, S. A., & Oki, M., Aleem, A. A., Adediran, A. A., Akpor, O. B. Oluba, O. M., Ogunsemi, B. T. and Ikubanni, P. P. (2019). Valorized chiken feather as corrosion inhibitor for mild steel in drillin mud. Results in Engineering, 4(2019), 100026.
  5. American Society for Testing and Materials, ASTM D1102-84. -Standard Test Method for Ash in Wood, 2007
  6. American Society for Testing and Materials, ASTM D2015-00: Standard Test Method for Gross Calorific Value of Coal and Coke by Adiabatic Bomb Calorimeter. West Conshohocken, 2000, 9pp
  7. American Society for Testing and Materials, ASTM D4239-11: Standard test method for sulphur in sample of coal and coke using high temperature tube furnace combustion. West Conshohocken, PA: ASTM International, 2011
  8. American Society for Testing and Materials, ASTM D5373-21. Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. West Conshohocken, PA: ASTM International, 2016
  9. American Society for Testing and Materials, ASTM E872-82 Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA: ASTM International, 2006
  10. American Society for Testing and Materials, E 1358 – 97: Standard Test Method for Determination of Moisture Content of Particulate Wood Fuels Using a Microwave Oven. West Conshohocken, PA: ASTM International, 2006
  11. Ayeni, A. O., Daramola, M. O., Awoyomi, A., Elehinafe, F. B., Ogunbiyi, A., Sekoai, P. T., & Folayan, J. A. (2018). Morphological modification of Chromolaena odorata cellulosic biomass using alkaline peroxide oxidation pretreatment methodology and its enzymatic conversion to biobased products. Cogent Engineering, 5 (1), 1509663,
  12. Baffour-Awuah, E., Akinlabi, S. A., Jen, T. C., Hassan, S., Okokpujie, I. P., & Ishola, F. (2021). Characteristics of Palm Kernel Shell and Palm Kernel Shell-Polymer Composites: A Review. In IOP Conference Series: Materials Science and Engineering, 1107(1), 012090. https://doi: 10.1088/1757-899X/1107/1/012090
  13. Balogun, A. O., Adeleke, A. A., Ikunbanni, P. P., Adegoke, S. O., Alayat, A. M., & Mcdonald, A. G. (2021). Physico-chemical characterization, thermal decomposition and kinetic modeling of Digitaria sanguinalis under nitrogen and air environments. Case Studies in Thermal Engineeering, 26 (2021), 101138.
  14. Banerjee, A., Bansal, N., Kumar, J., Bhaskar, T., Ray, A., & Ghosh, D. (2021). Characterization of the de-oiled yeast biomass for plausible value mapping in a biorefinery perspective. Bioresource Technology, 337 (2021), 125422.
  15. Bonfim, W. B., & De Paula, H. M. (2021). Characterization of different biomass ashes as supplementary cementitious material to produce coating mortar. Journal of Cleaner Production, 291 (2021), 125869.
  16. Channiwala, S.A., & Parikh, P.P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051–1063.
  17. Chukwuneke, J.L., Ewulonu, M.C., Chukwujike, I.C., & Okolie, P.C. (2019). Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon, 5 (2019), e01790.
  18. Efomah, A. N. & Gbabo, A. (2015). The Physical, Proximate and Ultimate Analysis of Rice Husk Briquettes Produced from a Vibratory Block Mould Briquetting Machine. International Journal of Innovative Science, Engineering & Technology, 2(5), 814-822
  19. Gajeraa, Z. R., Vermaa, K., Tekadeb, S. P., & Sawarkara, A. N. (2020). Kinetics of co-gasification of rice husk biomass and high sulphur petroleum coke with oxygen as gasifying medium via TGA. Bioresource Technology Reports, 11 (2020), 100479.
  20. Gautam, N., & Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy, 190 (2020), 116434.
  21. Gravalos, I. , Xyradakis, P. , Kateris, D. , Gialamas, T. , Bartzialis, D., & Giannoulis, K. (2016). An Experimental Determination of Gross Calorific Value of Different Agroforestry Species and Bio-Based Industry Residues. Natural Resources, 7 (2016), 57-68. doi: 10.4236/nr.2016.71006
  22. Ibikunle, R.A., Titiladunayo, I.F., Dahunsi, S.O., Akeju, E.A., & Osueke, C.O. (2021). Characterization and projection of dry season municipal solid waste for energy production in Ilorin metropolis, Nigeria. Waste Management & Research. 39(8), 1048-1057. doi: 10.1177/0734242X20985599
  23. Isah, A. N., Eterigho, E. J., Olutoye, M. A., Garba, M. U., & Okokpujie, I. P. (2020). Development and Test Performance of Heterogeneous Catalysts on Steam Reforming of Bioethanol for Renewable Hydrogen Synthesis: A Review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 73 (1) 69-108.
  24. Kartal, F., & Ozveren, U. (2021). An improved machine learning approach to estimate hemicellulose, cellulose, and lignin in biomass. Carbohydrate Polymer Technologies and Applications, 2 (2021), 100148.
  25. Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A. & Roslan, A. M. (2021). Evaluation of hybrid briquettes from corncob and oil palm trunk bark in a domestic cooking application for rural communities in Nigeria. Journal of Cleaner Production, 284 (2021), 124745.
  26. Kshirsagar, M. P., & Kalamkar, V. R. (2020). Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove. Renewable Energy, 153 (2020), 1127-1139.
  27. Maksimuk, Y., Antonava, Z., Krouk, V., Korsakova, A., & Kursevich, V. (2021). Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel, 299 (2021), 120860.
  28. Mansor, A. M., Lim, J. S., Ani, F. N., Hashim, H., & Ho, W. S. (2019). Characteristics of Cellulose, Hemicellulose and Lignin of MD2 Pineapple Biomass. Chemical Engineering Transactions, 72 (2019).
  29. Menares, T., Herrera, J., Romero, R., Osorio, P., & Arteaga-Pérez, L. E. (2020). Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 102 (2020), 21–29.
  30. Merdun, H., & Laouge, Z. B. (2020). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA. Renewable Energy, 163 (2021), 453-464.
  31. Merdun, H., & Laouge, Z. B. (2021). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA. Renewable Energy, 163 (2021), 453-464.
  32. Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., & Gibbs, B.M. (2009). Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol, 100 (2009), 1413–8.
  33. Nagarajan, J. & Prakash, L. (2021). Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Materials Today: Proceedings, 47 (2021), 4194–4198.
  34. Nnodim, C. T., Kpu,G. C., Okhuegbe, S. N., Ajani, A. A., Adebayo, S., Diarah, R. S., Aliyu, S. J., Onokwai, A. O., & Osueke, C. O. (2022). Figures of Merit for Wind and Solar PV Integration in Electricity Grids. Journal of Scientific and Industrial Research 81 (4), 349-357.
  35. Nwosu, F. O. and Muzakir, M. M. (2015). Isolation and Physicochemical Characterization of Lignin from Chromolaena Odorata and Tithonia Diversifolia. J. Appl. Sci. Environ. Management, 19 (4) 787–792.
  36. Okokpujie, I. P., Fayomi, O. S. I., & Oyedepo, S. O. (2019). The role of mechanical engineers in achieving sustainable development goals. Procedia Manufacturing, 35, 782-788.
  37. Okonkwo, U.C., Onokwai, A. O., Okeke, C. L., Osueke, C.O., Ezugwu, C. A., Diarah, R. S., & Aremu, C. O. (2019). Investigation of the effect of temperature on the rate of drying moisture and cyanide contents of cassava chips using oven drying process. International Journal of Mechanical Engineering and Technology, 10 (1), 1507-1520.
  38. Oladejo, O. S., Abiola, A. O., Olanipekun, A. A., & Ajayi, O. E., Onokwai, A. O. (2020). Energy Potential of Solid Waste Generated in Landmark University, Omu-Aran, Kwara State, Nigeria. LAUTECH Joural of Civil and Environmental Studies, 5 (2020).
  39. Onokwai, A. O., Okonkwo, U. C., Osueke, C. O., Olayanju, T. M. A., & Ibiwoye, M. (2019). Thermal Analysis of Solar Box Cooker in Omu-Aran Metropolis. Journal of Physics: Conference Series, 1378 (3) 032065. doi: 10.1088/1742-6596/1378/3/032065
  40. Onokwai, A. O., Okonkwo, U.C., Osueke, C.O., Okafor, C.O., Olayanju, T.M.A., & Dahunsi, S.O. (2019). Design, Modelling, Energy and Exergy Analysis of a Parabolic Cooker. Renewable, 142(2018), 497-510
  41. Onokwai, A. O., Okonkwo, U.C., Osueke, C.O., Okafor, C.O., Olayanju, T.M.A., & Dahunsi, S.O. (2019). Design, Modelling, Energy and Exergy Analysis of a Parabolic Cooker. Renewable Energy, 142(2018), 497-510.
  42. Osueke, C.O., Onokwai, A.O., Olayanju, T.M.A., Ezugwu, C.A., Ikpotokin, I., Uguru-Okorie, D.C., & Nnaji, F.C. (2019). Comparative Calorific Evaluation of Biomass Fuel and Fossil Fuel. International Journal of Civil Engineering and Technology, 9(13):1576-1590.
  43. Oyebanji, J. A., Fayomi, O. S. I., Oyeniyi, O. I., Akor, P. G., & Ajayi, S. T. (2022). Physico-chemical Analysis of Pyrolyzed Bio-Oil from Lophira alata (Ironwood) Wood. J Environ Pollut Manag, 101(4), 1-9
  44. Ozyuguran, A., & Yaman, S. (2017). Prediction of Calorific Value of Biomass from Proximate Analysis. Energy Procedia, 107, (2017), 130–136.
  45. Ozyuguran, A., Yaman, S., Kucukbayrak, S. (2018). Prediction of calorific value of biomass based on elemental analysis. International Advanced Researches and Engineering Journal, 2(3), 254-260
  46. Qian, C., Li, Q., Zhang, Z., Wang, X., Hu, J., & Cao, W. (2020). Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel, 265 (2020), 116925
  47. Quan, C., Ma, Z. and Gaoa,N., & He, C. (2018). Pyrolysis and combustion characteristics of corncob hydrolysis residue. Journal of Analytical and Applied Pyrolysis, 130 (2018), 72–78.
  48. Rajamma, R., Ball, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., Ferreira, V.M. (2009). Characterization and use of biomass fly ash in cement-based materials. J. Hazard Mater. 172 (2), 1049-1060.
  49. Roger, M. R., Roger P., & Mandla A. T. (2021). Cell Wall Chemistry from: Handbook of Wood Chemistry and Wood Composites CRC Press.
  50. Saleh, A. R., Sudarmanta, B., Fansuri, H., & Muraza, O. (2019). Improve municipal solid waste gasification efficiency using a modified downdraft gasifier with variations of air input and preheated air temperature. Energy Fuel, 33 (2019), 11049-11056. https://doi: org/10.1021/acs.energyfuels.9b02486
  51. Sawadogo, M., Kpai, N., Tankoano, I., Tanoh, S.T. & Sidib, S. (2018). Cleaner production in Burkina Faso: case study of fuel briquettes made from cashew industry waste. J. Clean. Prod. 195, 1047-1056. j.jclepro.2018.05.261
  52. Suárez, J.A., Luengo, C.A., Felfli, F.F., Bezzon, G., & Beatón, P.A. (2000). Thermochemical properties of Cuban biomass. Energy Sources 22(2000), 851–7
  53. Tortosa-Masiá, A.A., Buhre, B.J.P., & Gupta, R.P. (2007). Wall TF. Characterizing ash of biomass and waste. Fuel Process Technol., 88 (2007), 1071–81. doi: 10.1016/j.fuproc.2007.06.011
  54. Umar, H. A., Sulaiman, S. A., Said, M. A. B., & Ahmad, R. K. (2021). Palm Kernel Shell as Potential Fuel for Syngas Production. S. S. Emamian et al. (eds.), Advances in Manufacturing Engineering, Lecture Notes in Mechanical Engineering,

Last update:

No citation recorded.

Last update:

No citation recorded.