skip to main content

Utilization of Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel

1Chemistry Study Program, UIN Syarif Hidayatullah Jakarta, Indonesia

2Chemical Education Study Program, UIN Syarif Hidayatullah Jakarta, Indonesia

3Department of Chemical Engineering, Bayangkara University, Indonesia

4 Environmental Laboratory, UIN Syarif Hidayatullah Jakarta, Indonesia

View all affiliations
Received: 3 Dec 2019; Revised: 20 Jan 2020; Accepted: 17 Feb 2020; Published: 29 Feb 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Coconut shell waste is a waste that has a high carbon content. Carbon in coconut shell waste can be converted into activated carbon having a large surface area. This potential property is suitable to apply the coconut shell as catalyst support. To increase the catalytic activity, metal oxides such as Cr2O3 are impregnated. The purpose of this study is to synthesize Cr2O3/carbon catalyst and test its catalytic activity on catalytic cracking of Jatropha oil. The first stage was the synthesis of activated carbon and the determination of its proximate and ultimate. The second step was impregnation to produce Cr2O3/carbon catalyst. Furthermore, X-Ray Diffraction to determine crystallinity, Surface Area Analyzer to identify its surface area and Fourier Transform Infrared to analyze functional groups. Then the catalytic activity was tested on the catalytic cracking of Jatropha oil. In addition, the chemical compound composition and biofuel selectivity of the catalytic cracking product was determined using Gas Chromatography-Mass Spectrometer. Proximate analysis results showed that activated carbon contains 9%, 1%, 23%, and 67% of water, ash, evaporated substances, and bound carbon, respectively. The results of the ultimate analysis resulted in carbon (C), hydrogen (H), and nitrogen (N) contents of 65.422%, 3.384%, and 0.465%, correspondingly. The catalyst crystallinity test showed the presence of Cr2O3 peaks at 2θ: 24.43°; 33.47° and 36.25° according to JCPDS No. 84-1616. In the absorption area of 400-1000 cm-1 and the range of 2000 cm-1 showed the presence of Cr-O stretching due to Cr2O3 adsorbed into the activated carbon structure. The surface area of activated carbon and Cr2O3/carbon catalysts with a concentration of 1.3, and 5% was 8.930 m2/g; 47.205 m2/g; 50.562 m2/g; and 38.931 m2/g, respectively. The catalytic activity test presented that the best performance was showed by Cr2O3/carbon catalyst with a concentration of 5% indicated by conversion of Jatropha oil into biofuel of 67.777% with gasoline selectivity, kerosene, and diesel of 36.97%, 14.87%, and 15.94%, correspondingly.
Fulltext View|Download
Keywords: Coconut shell; carbon; catalytic cracking; biofuel; gasoline

Article Metrics:

  1. Roni Assafaat Hadi, 2019, Keragaan Pertumbuhan Tanaman Jarak Pagar (Jatropha curcass) di Pembibitan Akibat Pemberian Mikoriza di Dua Lokasi Berbeda Berdasarkan Ketinggian Tempat, Jurnal Pertanian, 10, 1, 43-51 http://dx.doi.org/10.30997/jp.v10i1.1655
  2. Novia, Kachairisma, Lidya Anggraini, 2011, Pembuatan Bio-Gasolin dari Minyak Jarak Pagar Melalui Proses Hydrocracking, Jurnal Teknik Kimia, 17, 5, 50-58
  3. I. Aziz, L. Adhani, T. Yolanda, N. Saridewi, 2019, Catalytic cracking of Jatropa curcas oil using natural zeolite of Lampung as a catalyst, IOP Conference Series: Earth and Environmental Science, 299, 012065 https://doi.org/10.1088/1755-1315/299/1/012065
  4. Riski Kurniawan, Musthofa Lutfi, Wahyunanto Agung Nugroho, 2013, Karakterisasi luas permukaan bet (braunanear, emmelt dan teller) karbon aktif dari tempurung kelapa dan tandan kosong kelapa sawit dengan aktivasi asam fosfat (H3PO4), Jurnal Keteknikan Pertanian Tropis dan Biosistem, 2, 1, 15-20
  5. Didi Dwi Anggoro, Muhammad Hanif Dzikri Wibawa, Moch Zaenal Fathoni, 2017, Pembuatan Briket Arang dari Campuran Tempurung Kelapa dan Serbuk gergaji Kayu Sengon, Teknik, 38, 2, 76-80 https://doi.org/10.14710/teknik.v38i2.13985
  6. Esmar Budi, 2017, Pemanfaatan Briket Arang Tempurung Kelapa Sebagai Sumber Energi Alternatif, Sarwahita, 14, 1, 81-84 https://doi.org/10.21009/sarwahita.141.10
  7. Dimas Rahardian Aji Muhammad, Nur Her Riyadi Parnanto, Fanny Widadie, 2013, Kajian Peningkatan Mutu Briket Arang Tempurung Kelapa dengan Alat Pengering Tipe Rak Berbahan Bakar Biomassa, Jurnal Teknologi Hasil Pertanian, 6, 1, 23-26 https://doi.org/10.20961/jthp.v0i0.13500
  8. Gilar S Pambayun, Remigius YE Yulianto, M Rachimoellah, Endah MM Putri, 2013, Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurangi kadar fenol dalam air limbah, Jurnal Teknik ITS, 2, 1, F116-F120 http://dx.doi.org/10.12962/j23373539.v2i1.2437
  9. Rinto Paputungan, Siti Nikmatin, Akhiruddin Maddu, Gustan Pari, 2018, Mikrostruktur Arang Aktif Batok Kelapa untuk Pemurnian Minyak Goreng Habis Pakai, Jurnal Keteknikan Pertanian, 6, 1, 69-74
  10. Nor Ain, Rodiansono Rodiansono, Kamilia Mustikasari, 2019, Efek Temperatur, Tekanan dan Waktu Reaksi pada Hidrogenasi Asam Heksadekanoat Menjadi 1-Eksadekanol Menggunakan Katalis Ru-Sn(3,0)/C, Jurnal Kimia Sains dan Aplikasi, 22, 4, 112-122 https://doi.org/10.14710/jksa.22.4.112-122
  11. Esther Bailón-García, Francisco J. Maldonado-Hódar, Agustín F. Pérez-Cadenas, Francisco Carrasco-Marín, 2013, Catalysts Supported on Carbon Materials for the Selective Hydrogenation of Citral, Catalysts, 3, 4, 853-877 https://doi.org/10.3390/catal3040853
  12. Rismawati Rasyid, Adrianto Prihartantyo, Mahfud Mahfud, Achmad Roesyadi, 2015, Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts, Bulletin of Chemical Reaction Engineering & Catalysis, 10, 1, 61-69 https://doi.org/10.9767/bcrec.10.1.6597.61-69
  13. Mothi Krishna Mohan, KR Sunajadevi, Nobi K Daniel, Soumya Gopi, Sugunan Sugunan, Nikhil Chandra Perumparakunnel, 2018, Cu/Pd Bimetallic Supported on Mesoporous TiO2 for Suzuki Coupling Reaction, Bulletin of Chemical Reaction Engineering & Catalysis, 13, 2, 286-294 https://doi.org/10.9767/bcrec.13.2.1393.286-294
  14. Andrii Kostyniuk, David Key, Masikana Mdleleni, 2019, Effect of Fe-Mo promoters on HZSM-5 zeolite catalyst for 1-hexene aromatization, Journal of Saudi Chemical Society, 23, 5, 612-626 https://doi.org/10.1016/j.jscs.2018.11.001
  15. Wega Trisunaryanti, 2018, Material Katalis dan Karakternya, Gadjah Mada University Press, Yogyakarta
  16. Wega Trisunaryanti, 2002, Optimation of Time and Catalyst/Feed Ratio in Catalytic Cracking of Waste Plastics Fraction to Gasoline Fraction Using Cr/Natural Zeolite Catalyst, Indonesian Journal of Chemistry, 2, 1, 30-40 https://doi.org/10.22146/ijc.21930
  17. Saranya Ashokkumar, Vivekanandan Ganesan, Krishnamurthy K. Ramaswamy, Viswanathan Balasubramanian, 2018, Bimetallic Co–Ni/TiO2 catalysts for selective hydrogenation of cinnamaldehyde, Research on Chemical Intermediates, 44, 11, 6703-6720 https://doi.org/10.1007/s11164-018-3517-7
  18. Setijo Bismo, A. Azhariyah, Astrini Pradyasti, 2017, Potensi Karbon Aktif sebagai Penyangga Katalis Dekomposisi Ozon, Seminar Nasional Integrasi Proses 2017, Cilegon
  19. Upita Septiani, Mega Gustiana, Safni, 2015, Pembuatan Dan Karakterisasi Katalis TiO2/Karbon Aktif dengan Metode Solid State, Jurnal Riset Kimia, 9, 1, 34 https://doi.org/10.25077/jrk.v9i1.257
  20. E Taer, T Oktaviani, R Taslim, R Farma, 2015, Karakterisasi Sifat Fisika Karbon Aktif Tempurung Kelapa Dengan Variasi Konsentrasi Aktivator Sebagai Kontrol Kelembaban, Prosiding Seminar Nasional Fisika (E-Journal) SNF2015
  21. Vivek Sheel Jaswal, Avnish Kumar Arora, Joginder Singh, Mayank Kinger, Vishnu Dev Gupta, 2014, Synthesis and characterization of chromium oxide nanoparticles, Oriental Journal of Chemistry, 30, 2, 559-566 http://dx.doi.org/10.13005/ojc/300220
  22. F Farzaneh, M Najafi, 2011, Synthesis and characterization of Cr2O3 nanoparticles with triethanolamine in water under microwave irradiation, Journal of Sciences Islamic Republic of Iran, 22, 4, 329-333
  23. Vidyanova Anggun Mentari, Gewa Handika, Seri Maulina, 2018, Perbandingan Gugus Fungsi dan Morfologi Permukaan Karbon Aktif dari Pelepah Kelapa Sawit Menggunakan Aktivator Asam Fosfat (H3PO4) dan Asam Nitrat (HNO3), Jurnal Teknik Kimia USU, 7, 1, 16-20 https://doi.org/10.32734/jtk.v7i1.1629
  24. Farhad Rahmani, Mohammad Haghighi, Majed Amini, 2015, The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, Journal of Industrial and Engineering Chemistry, 31, 142-155 https://doi.org/10.1016/j.jiec.2015.06.018
  25. Sen Tian, Xuemei Ye, Yaping Dong, Wu Li, Bo Zhang, Bo Li, Haitao Feng, 2019, Production and Characterization of Chromium Oxide (Cr2O3) via a Facile Combination of Electrooxidation and Calcination, International Journal of Electrochemical Science, 14, 8805-8818 https://doi.org/10.20964/2019.09.21
  26. Zainal Fanani, Dedi Rohendi, Tri Kurnia Dewi, 2016, Preparation and Characterization of Cr/Activated Carbon Catalyst from Palm Empty Fruit Bunch, IJFAC (Indonesian Journal of Fundamental and Applied Chemistry), 1, 2, 35-41 http://dx.doi.org/10.24845/ijfac.v1.i2.35
  27. M. A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, 2003, Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism, Carbon, 41, 2, 267-275 https://doi.org/10.1016/S0008-6223(02)00279-8
  28. J. A. Melero, A. García, M. Clavero, 2011, 15 - Production of biofuels via catalytic cracking, in: R. Luque, J. Campelo, J. Clark (Eds.) Handbook of Biofuels Production, Woodhead Publishing, https://doi.org/10.1533/9780857090492.3.390
  29. Wega Trisunaryanti, Triyono Triyono, Denty Fibirna A, 2003, Preparation of Ni-Mo/Mordenite Catalysts under the Variation of Mo/Ni Ratio and Their Characterizations for Stearic Acid Conversion, Indonesian Journal of Chemistry, 3, 2, 80-90 https://doi.org/10.22146/ijc.21890
  30. Alexander Weinert, Alexander Reichhold, Peter Bielansky, Christoph Schönberger, Bettina Schumi, 2011, Bio-Gasoline from Jatropha Oil: New Applications for the FCC-Process, 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10
  31. S. A. P. da Mota, A. A. Mancio, D. E. L. Lhamas, D. H. de Abreu, M. S. da Silva, W. G. dos Santos, D. A. R. de Castro, R. M. de Oliveira, M. E. Araújo, Luiz E. P. Borges, N. T. Machado, 2014, Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant, Journal of Analytical and Applied Pyrolysis, 110, 1-11 https://doi.org/10.1016/j.jaap.2014.06.011
  32. Xianhui Zhao, Lin Wei, Shouyun Cheng, James Julson, 2015, Optimization of catalytic cracking process for upgrading camelina oil to hydrocarbon biofuel, Industrial Crops and Products, 77, 516-526 https://doi.org/10.1016/j.indcrop.2015.09.019

Last update:

  1. A review of the synthesis of activated carbon for biodiesel production: Precursor, preparation, and modification

    Samah Zaki Naji, Ching Thian Tye. Energy Conversion and Management: X, 13 , 2022. doi: 10.1016/j.ecmx.2021.100152
  2. Catalytic cracking of jatropha oil into biofuel over hierarchical zeolite supported NiMo catalyst

    Isalmi Aziz, Tri Retnaningsih, Dhika Gustama, Nanda Saridewi, Lisa Adhani, Adip A. Dwiatmoko. 4TH INTERNATIONAL SEMINAR ON CHEMISTRY, 2349 , 2021. doi: 10.1063/5.0051737
  3. Bioethanol Production from Cassava Peel Treated with Sulfonated Carbon Catalyzed Hydrolysis

    Primata Mardina, Chairul Irawan, Meilana Dharma Putra, Sylvera Bella Priscilla, Misnawati Misnawati, Iryanti Fatyasari Nata. Jurnal Kimia Sains dan Aplikasi, 24 (1), 2021. doi: 10.14710/jksa.24.1.1-8

Last update: 2024-04-24 20:40:45

No citation recorded.