skip to main content

Combined Classical and Flooding Molecular Dynamics Simulations of The Mip-Rapamycin and FKBP12-Rapamycin Complexes

Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, East Java, Indonesia

Received: 6 Jun 2023; Revised: 4 Nov 2023; Accepted: 9 Nov 2023; Published: 15 Nov 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Macrophage infectivity potentiator (Mip) protein, an essential virulence factor encoded by pathogenic bacteria such as Legionella pneumophila, arises as an interesting new therapeutic target for novel antimicrobials. However, Mip- ligands also interact with FKBP12 protein, a human FKBP exhibiting immunosuppressive effects. Therefore, these ligands are unsuitable antibiotics. Understanding the dynamics and conformations of proteins in the binding pocket is important to predict binding properties and to design new binders for different FKBPs. We performed the 40 ns combined classical and flooding molecular dynamics simulations using additional flooding potential for Mip-rapamycin and FKBP12-rapamycin complexes. Both complexes have different flexibilities and dihedral angle principal component analysis calculated from MD trajectories. As a result, the Mip-rapamycin complex had more conformations than the FKBP12-rapamycin complex. These different features of both complexes at the binding pocket will provide new dues for the design of selective inhibitors of Mip proteins

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
Interactions in the binding pocket
Subject hydrogen bonds
Type Research Results
  Download (22KB)    Indexing metadata
Keywords: macrophage infectivity potentiator; Legionella pneumophila; FKBP12, conformational flooding; dihedral angle principal component analysis

Article Metrics:

  1. Victor L. Yu, Joseph F. Plouffe, Maddalena Castellani Pastoris, Janet E. Stout, Mona Schousboe, Andreas Widmer, James Summersgill, Thomas File, Christopher M. Heath, David L. Paterson, Annette Chereshsky, Distribution of Legionella Species and Serogroups Isolated by Culture in Patients with Sporadic Community-Acquired Legionellosis: An International Collaborative Survey, The Journal of Infectious Diseases, 186, 1, (2002), 127-128 https://doi.org/10.1086/341087
  2. Andrea L. Benin, Robert F. Benson, Richard E. Besser, Trends in Legionnaires Disease, 1980–1998: Declining Mortality and New Patterns of Diagnosis, Clinical Infectious Diseases, 35, 9, (2002), 1039-1046 https://doi.org/10.1086/342903
  3. Nabi Jomehzadeh, Mojtaba Moosavian, Morteza Saki, Mohammad Rashno, Legionella and legionnaires' disease: An overview, Journal of Acute Disease, 8, 6, (2019), 221-232 https://doi.org/10.4103/2221-6189.272853
  4. Thomas J. Marrie, Paul S. Hoffman, Chapter 32 - Legionellosis, in: R.L. Guerrant, D.H. Walker, P.F. Weller (Eds.) Tropical Infectious Diseases: Principles, Pathogens and Practice (Third Edition), W.B. Saunders, Edinburgh, 2011, https://doi.org/10.1016/B978-0-7020-3935-5.00032-X
  5. J. Rasch, C. M. Ünal, A. Klages, Ü. Karsli, N. Heinsohn, R. M. H. J. Brouwer, M. Richter, A. Dellmann, M. Steinert, Peptidyl-Prolyl-cis/trans-Isomerases Mip and PpiB of Legionella pneumophila Contribute to Surface Translocation, Growth at Suboptimal Temperature, and Infection, Infection and Immunity, 87, (2019), e00939-00917 https://doi.org/10.1128/iai.00939-17
  6. Jadwiga Winiecka-Krusnell, Ewert Linder, Free-living Amoebae Protecting Legionella in Water: The Tip of an Iceberg?, Scandinavian Journal of Infectious Diseases, 31, 4, (1999), 383-385 https://doi.org/10.1080/00365549950163833
  7. Andreas Ceymann, Martin Horstmann, Philipp Ehses, Kristian Schweimer, Anne-Katrin Paschke, Michael Steinert, Cornelius Faber, Solution structure of the Legionella pneumophila Mip-rapamycin complex, BMC Structural Biology, 8, (2008), 17 https://doi.org/10.1186/1472-6807-8-17
  8. Gregory D. Van Duyne, Robert F. Standaert, Stuart L. Schreiber, Jon Clardy, Atomic structure of the rapamycin human immunophilin FKBP-12 complex, Journal of the American Chemical Society, 113, 19, (1991), 7433-7434 https://doi.org/10.1021/ja00019a057
  9. Matthew W. Harding, Andrzej Galat, David E. Uehling, Stuart L. Schreiber, A receptor for the immuno-suppressant FK506 is a cis–trans peptidyl-prolyl isomerase, Nature, 341, 6244, (1989), 758-760 https://doi.org/10.1038/341758a0
  10. Jürgen M. Kolos, Andreas M. Voll, Michael Bauder, Felix Hausch, FKBP Ligands—Where We Are and Where to Go?, Frontiers in Pharmacology, 9, (2018), 1425 https://doi.org/10.3389/fphar.2018.01425
  11. John J. Siekierka, Shirley H. Y. Hung, Martin Poe, C. Shirley Lin, Nolan H. Sigal, A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin, Nature, 341, (1989), 755-757 https://doi.org/10.1038/341755a0
  12. Robert Cafferkey, Peter R. Young, Megan M. McLaughlin, Derk J. Bergsma, Yigal Koltin, Ganesh M. Sathe, Leo Faucette, Wai-Kwong Eng, Randall K. Johnson, George P. Livi, Dominant Missense Mutations in a Novel Yeast Protein related to Mammalian Phosphatidylinositol 3-Kinase and VPS34 Abrogate Rapamycin Cytotoxicity, Molecular and Cellular Biology, 13, 10, (1993), 6012-6023 https://doi.org/10.1128/mcb.13.10.6012-6023.1993
  13. Joseph Heitman, N. Rao Movva, Michael N. Hall, Targets for Cell Cycle Arrest by the Immunosuppressant Rapamycin in Yeast, Science, 253, 5022, (1991), 905-909 https://doi.org/10.1126/science.1715094
  14. Jeannette Kunz, Ruben Henriquez, Ulrich Schneider, Maja Deuter-Reinhard, N. Rao Movva, Michael N. Hall, Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression, Cell, 73, 3, (1993), 585-596 https://doi.org/10.1016/0092-8674(93)90144-F
  15. Mingming Tong, Yu Jiang, FK506-Binding Proteins and Their Diverse Functions, Current Molecular Pharmacology, 9, (2016), 48-65 http://dx.doi.org/10.2174/1874467208666150519113541
  16. Janine Rasch, Martin Theuerkorn, Can Ünal, Natascha Heinsohn, Stefan Tran, Gunter Fischer, Matthias Weiwad, Michael Steinert, Novel Cycloheximide Derivatives Targeting the Moonlighting Protein Mip Exhibit Specific Antimicrobial Activity Against Legionella pneumophila, Frontiers in Bioengineering and Biotechnology, 3, 41, (2015), https://doi.org/10.3389/fbioe.2015.00041
  17. Maral Aminpour, Carlo Montemagno, Jack A. Tuszynski, An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications, Molecules, 24, 9, (2019), 1693 https://doi.org/10.3390/molecules24091693
  18. Emilia P. Barros, Jamie M. Schiffer, Anastassia Vorobieva, Jiayi Dou, David Baker, Rommie E. Amaro, Improving the Efficiency of Ligand-Binding Protein Design with Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, 15, 10, (2019), 5703-5715 https://doi.org/10.1021/acs.jctc.9b00483
  19. Hideaki E. Kato, Yoon Seok Kim, Joseph M. Paggi, Kathryn E. Evans, William E. Allen, Claire Richardson, Keiichi Inoue, Shota Ito, Charu Ramakrishnan, Lief E. Fenno, Keitaro Yamashita, Daniel Hilger, Soo Yeun Lee, Andre Berndt, Kang Shen, Hideki Kandori, Ron O. Dror, Brian K. Kobilka, Karl Deisseroth, Structural mechanisms of selectivity and gating in anion channelrhodopsins, Nature, 561, 7723, (2018), 349-354 https://doi.org/10.1038/s41586-018-0504-5
  20. Aashish Manglik, Henry Lin, Dipendra K. Aryal, John D. McCorvy, Daniela Dengler, Gregory Corder, Anat Levit, Ralf C. Kling, Viachaslau Bernat, Harald Hübner, Xi-Ping Huang, Maria F. Sassano, Patrick M. Giguère, Stefan Löber, Duan Da, Grégory Scherrer, Brian K. Kobilka, Peter Gmeiner, Bryan L. Roth, Brian K. Shoichet, Structure-based discovery of opioid analgesics with reduced side effects, Nature, 537, (2016), 185-190 https://doi.org/10.1038/nature19112
  21. Gleb Solomentsev, Carl Diehl, Mikael Akke, Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations, Biochemistry, 57, 9, (2018), 1451-1461 https://doi.org/10.1021/acs.biochem.7b01256
  22. Lilian Olivieri, Fabrice Gardebien, Structure-Affinity Properties of a High-Affinity Ligand of FKBP12 Studied by Molecular Simulations of a Binding Intermediate, PLoS ONE, 9, 12, (2014), e114610 https://doi.org/10.1371/journal.pone.0114610
  23. Scott A. Hollingsworth, Ron O. Dror, Molecular Dynamics Simulation for All, Neuron, 99, 6, (2018), 1129-1143 https://doi.org/10.1016/j.neuron.2018.08.011
  24. Helmut Grubmüller, Predicting slow structural transitions in macromolecular systems: Conformational flooding, Physical Review E, 52, 3, (1995), 2893-2906 https://doi.org/10.1103/PhysRevE.52.2893
  25. Oliver F. Lange, Lars V. Schäfer, Helmut Grubmüller, Flooding in GROMACS: Accelerated barrier crossings in molecular dynamics, Journal of Computational Chemistry, 27, 14, (2006), 1693-1702 https://doi.org/10.1002/jcc.20473
  26. Brita G. Schulze, Helmut Grubmüller, Jeffrey D. Evanseck, Functional Significance of Hierarchical Tiers in Carbonmonoxy Myoglobin: Conformational Substates and Transitions Studied by Conformational Flooding Simulations, Journal of the American Chemical Society, 122, 36, (2000), 8700-8711 https://doi.org/10.1021/ja993788y
  27. Junmei Wang, Romain M. Wolf, James W. Caldwell, Peter A. Kollman, David A. Case, Development and testing of a general amber force field, Journal of Computational Chemistry, 25, 9, (2004), 1157-1174 https://doi.org/10.1002/jcc.20035
  28. D Case, I Ben-Shalom, S Brozell, D Cerutti, T III Cheatham, V Cruzeiro, T Darden, R Duke, D Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. Greene, R Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J. Mermelstein, K.M. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D.R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. Salomon-Ferrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, D.M. York, P.A. Kollman, Amber 2018, University of California, San Francisco, 2018,
  29. Alan W. Sousa da Silva, Wim F. Vranken, ACPYPE - AnteChamber PYthon Parser interfacE, BMC Research Notes, 5, (2012), 367 https://doi.org/10.1186/1756-0500-5-367
  30. Junmei Wang, Wei Wang, Peter A. Kollman, David A. Case, Automatic atom type and bond type perception in molecular mechanical calculations, Journal of Molecular Graphics and Modelling, 25, 2, (2006), 247-260 https://doi.org/10.1016/j.jmgm.2005.12.005
  31. M. J. Abraham, D. Van Der Spoel, E. Lindahl, B. Hess, in, 2018,
  32. Henk Bekker, H. J. C. Berendsen, E. J. Dijkstra, S. Achterop, R. Vondrumen, David Vanderspoel, A. Sijbers, H. Keegstra, M. K. R. Renardus, Gromacs: A parallel computer for molecular-dynamics simulations, 4th International Conference on Computational Physics (PC 92), 1993
  33. H. J. C. Berendsen, D. van der Spoel, R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, 91, 1, (1995), 43-56 https://doi.org/10.1016/0010-4655(95)00042-E
  34. Berk Hess, Carsten Kutzner, David van der Spoel, Erik Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, 4, 3, (2008), 435-447 https://doi.org/10.1021/ct700301q
  35. Erik Lindahl, Berk Hess, David van der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Molecular modeling annual, 7, (2001), 306-317 https://doi.org/10.1007/s008940100045
  36. Szilárd Páll, Mark James Abraham, Carsten Kutzner, Berk Hess, Erik Lindahl, Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS, Solving Software Challenges for Exascale, Cham, 2015 https://doi.org/10.1007/978-3-319-15976-8_1
  37. Sander Pronk, Szilárd Páll, Roland Schulz, Per Larsson, Pär Bjelkmar, Rossen Apostolov, Michael R. Shirts, Jeremy C. Smith, Peter M. Kasson, David van der Spoel, Berk Hess, Erik Lindahl, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29, 7, (2013), 845-854 https://doi.org/10.1093/bioinformatics/btt055
  38. David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, Herman J. C. Berendsen, GROMACS: Fast, flexible, and free, Journal of Computational Chemistry, 26, 16, (2005), 1701-1718 https://doi.org/10.1002/jcc.20291
  39. Kresten Lindorff-Larsen, Stefano Piana, Kim Palmo, Paul Maragakis, John L. Klepeis, Ron O. Dror, David E. Shaw, Improved side-chain torsion potentials for the Amber ff99SB protein force field, Proteins: Structure, Function, and Bioinformatics, 78, 8, (2010), 1950-1958 https://doi.org/10.1002/prot.22711
  40. William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, Michael L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, 79, (1983), 926-935 https://doi.org/10.1063/1.445869
  41. Tom Darden, Darrin York, Lee Pedersen, Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems, The Journal of Chemical Physics, 98, (1993), 10089-10092 https://doi.org/10.1063/1.464397
  42. Giovanni Bussi, Davide Donadio, Michele Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, 126, (2007), 014101 https://doi.org/10.1063/1.2408420
  43. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, 52, (1981), 7182-7190 https://doi.org/10.1063/1.328693
  44. Shuichi Miyamoto, Peter A. Kollman, Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models, Journal of Computational Chemistry, 13, 8, (1992), 952-962 https://doi.org/10.1002/jcc.540130805
  45. Jean-Paul Ryckaert, Giovanni Ciccotti, Herman J. C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, 23, 3, (1977), 327-341 https://doi.org/10.1016/0021-9991(77)90098-5
  46. Justin A. Lemkul, From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0], Living Journal of Computational Molecular Science, 1, 1, (2019), 5068 https://doi.org/10.33011/livecoms.1.1.5068
  47. Benjamin Bouvier, Helmut Grubmüller, A Molecular Dynamics Study of Slow Base Flipping in DNA using Conformational Flooding, Biophysical Journal, 93, 3, (2007), 770-786 https://doi.org/10.1529/biophysj.106.091751
  48. Gareth A. Tribello, Michele Ceriotti, Michele Parrinello, A self-learning algorithm for biased molecular dynamics, Proceedings of the National Academy of Sciences, 107, 41, (2010), 17509-17514 https://doi.org/10.1073/pnas.1011511107
  49. Alexandros Altis, Phuong H. Nguyen, Rainer Hegger, Gerhard Stock, Dihedral angle principal component analysis of molecular dynamics simulations, The Journal of Chemical Physics, 126, 24, (2007), 244111 https://doi.org/10.1063/1.2746330
  50. Alexandros Altis, Moritz Otten, Phuong H. Nguyen, Rainer Hegger, Gerhard Stock, Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis, The Journal of Chemical Physics, 128, (2008), 245102 https://doi.org/10.1063/1.2945165
  51. Jun Liang, Jungwon Choi, Jon Clardy, Refined structure of the FKBP12–rapamycin–FRB ternary complex at 2.2 Å resolution, Acta Crystallographica Section D: Biological Crystallography, 55, 4, (1999), 736-744 https://doi.org/10.1107/S0907444998014747
  52. Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira, David Baltimore, James Darnell, Noncovalent bonds, in: Molecular Cell Biology, W. H. Freeman, 2000,
  53. S. Gaali, R. Gopalakrishnan, Y. Wang, C. Kozany, F. Hausch, The Chemical Biology of Immunophilin Ligands, Current Medicinal Chemistry, 18, 35, (2011), 5355-5379 http://dx.doi.org/10.2174/092986711798194342
  54. BIOVIA, Discovery Studio Visualizer, Dassault Systèmes, (2020), https://3ds.com/products-services/biovia/products
  55. William Humphrey, Andrew Dalke, Klaus Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, 14, 1, (1996), 33-38 https://doi.org/10.1016/0263-7855(96)00018-5

Last update:

No citation recorded.

Last update: 2024-10-06 11:12:24

No citation recorded.