skip to main content

Hydrodynamic Model and Tidal Current Energy Potential in Lepar Strait, Indonesia

1Ocean Engineering Department, Institut Teknologi Bandung, Indonesia

2School of Engineering, The University of Edinburgh, United Kingdom

Received: 2 Mar 2021; Revised: 12 Jul 2021; Accepted: 30 Jul 2021; Available online: 5 Sep 2021; Published: 1 Feb 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Previous studies have shown the abundance of tidal energy resources in Indonesia. However, some sites have yet to be considered. The Lepar Strait, for example, is located between Bangka and Lepar Islands. This paper describes a field survey and numerical modelling conducted in the Lepar Strait. The modelling was performed using Delft3D, with the aim of determining potential sites for harvesting tidal current energy and estimate the generated power. In the modelling, the domain decomposition method was employed for model downscaling, allowing grid resolution reaching 130 x 130 m2, which is sufficient to represent the narrow gaps between tiny islands in the area of interest. The National Bathymetric (Batnas) from the Geospatial Information Agency (BIG) and the International Hydrographic Organization (IHO) tide constituents were applied for the bathymetry and tide elevation boundaries. The comparison between the surveyed and modelled data showed a good agreement. The RMSE and r for water level are > 0.95 and < 0.15, and the RMSE for velocity was <0.19. Furthermore, an energetic flow reaching 1.5 m/s was found at the Northern part of Lepar Strait, situated at the narrow gaps. The Gorlov Helical Turbine was selected in this study due to shallow water and low mean velocity. In the 2019 model, the power density and power output at the best potential sites were 2,436.94 kWh/m2 and 1,870.41 kWh, respectively. This number is higher than those previously found in Kelabat Bay. Nonetheless, it is still far below the currently promising project in Larantuka and Lombok Straits. Future research is recommended, to conduct a detailed field measurement campaign and assess the impact of energy extraction in more detail.
Fulltext View|Download
Keywords: Renewable Energy; Power Output; Bangka Island; Numerical Model; Tide; Delft3D
Funding: P3MI – Program Penelitian, Pengabdian kepada Masyarakat dan Inovasi ITB

Article Metrics:

  1. Ajiwibowo, H., Lodiwa, K. S., Pratama, M. B., & Wurjanto, A. (2017a). Field measurement and numerical modeling of tidal current in Larantuka Strait for renewable energy utilization. International Journal of GEOMATE, 13(39), 124–131. https://doi.org/10.21660/2017.39.98548
  2. Ajiwibowo, H., Lodiwa, K. S., Pratama, M. B., & Wurjanto, A. (2017b). Numerical model of tidal current for power harvesting in Bangka Strait. International Journal of Earth Sciences and Engineering, 10(04), 833–843. https://doi.org/10.21276/ijee.2017.10.0415
  3. Ajiwibowo, H., & Pratama, M. B. (2017). The effect of gate existence at L Island on the seabed profile due to reclamation of Jakarta Bay. International Journal of Engineering and Technology, 9(5), 3763–3774. https://doi.org/10.21817/ijet/2017/v9i5/170905110
  4. Ajiwibowo, H., & Pratama, M. B. (2018). The influence of the Jakarta bay reclamation on the surrounding tidal elevation and tidal current. International Journal of GEOMATE, 15(48), 55–65. https://doi.org/10.21660/2018.48.22773
  5. Ajiwibowo, H., & Pratama, M. B. (2020). Hydrodynamic changes impacted by the waterway capital dredging in Cikarang Bekasi Laut Channel, West Java, indonesia. Water Practice and Technology, 15(2), 450–459. https://doi.org/10.2166/wpt.2020.032
  6. Ajiwibowo, H., Pratama, M. B., & Wurjanto, A. (2017). Assessment of tidal current power potency in Kelabat Bay, Indonesia. International Journal of Engineering and Technology, 9(4), 3100–3110. https://doi.org/10.21817/ijet/2017/v9i4/170904089
  7. Amiruddin, Ribal, A., Khaeruddin, & Amir, K. A. (2019). Preliminary estimation of tidal current energy for three straits in the vicinity of Bali and Lombok Islands. International Journal of Renewable Energy Research, 9(4), 1638–1649. https://www.ijrer-net.ijrer.org/index.php/ijrer/article/view/9910/pdf
  8. Anwar, I. P., Putri, M. R., & Setiawan, A. (2018). Variation of Volume Transport and Variability of Current in Karimata and Gaspar Straits during 2010-2014 Based on Numerical Modelling. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 9(2), 771–780. https://doi.org/10.29244/jitkt.v9i2.19309
  9. ASELI. (2014). Potensi Energi Laut Indonesia. Asosiasi Energi Laut Indonesia
  10. BIG. (2018). Batimetri Nasional. Seamless Digital Elevation Model (DEM) Dan Batimetri Nasional. http://tides.big.go.id/DEMNAS/
  11. BIG. (2021). DATASET: indo_ww3 VARIABLE: Wave height (meter). http://tides.big.go.id/las/UI.vm
  12. Bijvelds, M. (2001). Numerical modelling of estuarine flow over steep topography. Delft University of Technology
  13. BPS Kabupaten Bangka Selatan. (2020). Tukak Sadai Subdistrict in Figures. https://bangkaselatankab.bps.go.id/publication
  14. de Pablo, H., Sobrinho, J., Garcia, M., Campuzano, F., Juliano, M., & Neves, R. (2019). Validation of the 3D-MOHID Hydrodynamic Model for the Tagus Coastal Area. Water, 11(8), 1713. https://doi.org/10.3390/w11081713
  15. Deltares. (2014). Delft3D-FLOW: User manual (3.15). Deltares
  16. DEN. (2019). Indonesia Energy Outlook 2019. https://www.esdm.go.id/assets/media/content/content-indonesia-energy-outlook-2019-english-version.pdf
  17. ECMWF. (2021). ERA5 hourly data on single levels from 1979 to present. https://doi.org/10.24381/cds.adbb2d47
  18. Fajar, Purwanto, & Indrayanti, E. (2014). Kajian potensi arus laut sebagai energi alternatif pembangkit listrik di perairan sekitar Jembatan Suramadu Selat Madura. 3(3), 294–303
  19. Firdaus, A. M., Houlsby, G. T., & Adcock, T. A. A. (2019). Resource estimates in Lombok Straits , Indonesia. Proceedings of the 13th European Wave and Tidal Energy Conference, September, 1669
  20. Firdaus, A. M., Houlsby, G. T., & Adcock, T. A. A. (2020). Tidal energy resource in Larantuka Strait, Indonesia. Energy, 173(2), 81–92
  21. Garanovic, A. (2021, April 23). Orbital Marine launches world’s most powerful tidal turbine. https://www.offshore-energy.biz/orbital-marine-launches-worlds-most-powerful-tidal-turbine/
  22. GEBCO Bathymetric Compilation Group 2019. (2019). The GEBCO_2019 Grid - a continuous terrain model of the global oceans and land. British Oceanographic Data Centre. https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e
  23. Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006
  24. Hariati, F., Ajiwibowo, H., Hadihardaja, I. K., & Nugroho, J. (2019). Modeling Adaptation to Salinity Intrusion in Segara Anakan Estuary due to Sea Level Rise. International Journal of GEOMATE, 16, 2186–2990. https://doi.org/10.21660/2019.53.05655
  25. Hartoko, A., Febrianto, A., Pamungkas, A., Fachruddin, I., & Helmi, M. (2019). The Myth and Legend of Sadai and Gaspar Strait Bangka Belitung (Banca-Billiton) and Oceanographic Conditions. International Journal of GEOMATE, 17, 212–218. https://doi.org/10.21660/2019.62.93965
  26. IRENA. (2017). Renewable Energy Prospects: Indonesia, a REmap analysis. International Renewable Energy Agency. www.irena.org/remap
  27. Kurniawan, A., Barli, P. P. A., Pratama, M. B., & Fitriadhy, A. (2021). Potential study of tidal stream turbine farm at Toyapakeh Strait. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, In Review
  28. Lewis, M., Neill, S. P., Robins, P., Hashemi, M. R., & Ward, S. (2017). Characteristics of the velocity profile at tidal-stream energy sites. Renewable Energy, 114. https://doi.org/10.1016/j.renene.2017.03.096
  29. Moomaw, W., Yamba, F., Kamimoto, M., Maurice, L., Nyboer, J., Urama, K., & Weir, T. (2011). Introduction. In O. Edenhofer, Pichs-Madruga, R. Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, & C. vo. Stechow (Eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (p. 48). Cambridge University Press
  30. Natalie, E., Ismanto, A., Priyono, B., Studi Oseanografi, P., Perikanan dan Ilmu Kelautan, F., & Penelitian dan Observasi Laut Jl Baru Perancak, B. (2016). Analisis Karakteristik Arus Laut untuk Pemanfaatan Potensi Energi Alternatif di Perairan Selat Gaspar. In Jurnal Oseanografi (Vol. 5, Issue 3). Diponegoro University. http://ejournal-s1.undip.ac.id/index.php/joseJl.Prof.Sudarto,SHTembalangTlp./Fax
  31. Nederhoff, K., Dongeren, A. van, & Ormondt, M. van. (2016). Delft Dashboard: a MATLAB- based rapid tool for setting up coastal and estuarine models. Deltares. https://publicwiki.deltares.nl/display/DDB/General
  32. Neill, S. P., Vögler, A., Goward-Brown, A. J., Baston, S., Lewis, M. J., Gillibrand, P. A., Waldman, S., & Woolf, D. K. (2017). The wave and tidal resource of Scotland. Renewable Energy, 114. https://doi.org/10.1016/j.renene.2017.03.027
  33. Novico, F., Sudjono, E. H., Egon, A., Menier, D., Methew, M., & Pratama, M. B. (2021). Tidal Current Energy Resources Assessment in the Patinti Strait, Indonesia. International Journal of Renewable Energy Development, 10(3), 517–525. https://doi.org/10.14710/ijred.2021.35003
  34. Orhan, K., Mayerle, R., Narayanan, R., & Pandoe, W. W. (2016). Investigation of the energy potential from tidal stream currents in Indonesia. Proceedings of the Coastal Engineering Conference, 35(September 2017). https://doi.org/10.9753/icce.v35.management.10
  35. Orhan, K., Mayerle, R., & Pandoe, W. W. (2015). Assesment of Energy Production Potential from Tidal Stream Currents in Indonesia. Energy Procedia, 76, 7–16. https://doi.org/10.1016/j.egypro.2015.07.834
  36. Pamungkas, A. (2018). Karakteristik Parameter Oseanografi (Pasang-Surut, Arus, dan Gelombang) di Perairan Utara dan Selatan Pulau Bangka. Buletin Oseanografi Marina, 7(1), 51. https://doi.org/10.14710/buloma.v7i1.19042
  37. Pemerintah Kabupaten Bangka Selatan. (2018). Infrastruktur Kawasan Industri Sadai
  38. Pratama, M. B. (2017). Studi Potensi Daya Pembangkit Listrik Tenaga Arus Laut Selat Bangka, Provinsi Kepulauan Bangka Belitung. Institut Teknologi Bandung
  39. Pratama, M. B. (2020). Modelling Tidal Energy Extraction in Sunda Strait, Indonesia. The University of Edinburgh
  40. Pratama, M. B. (2019). Tidal flood in Pekalongan: Utilizing and operating open resources for modelling. IOP Conference Series: Materials Science and Engineering, 676(1), 012029. https://doi.org/10.1088/1757-899X/676/1/012029
  41. Pratama, M. B., Venugopal, V., Ajiwibowo, H., Ginting, J. W., & Novico, F. (2020). Modelling Tidal Flow Hydrodynamics of Sunda Strait, Indonesia. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 25(4), 165–172. https://doi.org/10.14710/ik.ijms.25.4.165-172
  42. Rahman, A., & Venugopal, V. (2017). Parametric analysis of three dimensional flow models applied to tidal energy sites in Scotland. Estuarine, Coastal and Shelf Science, 189, 17–32. https://doi.org/10.1016/j.ecss.2017.02.027
  43. Ritchie, H. (2017). Renewable Energy. OurWorldInData.Org. https://ourworldindata.org/renewable-energy
  44. Rizal, A. M., Ningsih, N. S., Sofian, I., Hanifah, F., & Hilmi, I. (2019). Preliminary study of wave energy resource assessment and its seasonal variation along the southern coasts of Java, Bali, and Nusa Tenggara waters. Journal of Renewable and Sustainable Energy, 11(1), 014502. https://doi.org/10.1063/1.5034161
  45. Sartika, D., Hartoko, A., & Kurniawan, K. (2018). Analisis Data Batimetri Lapangan dan Citra Landsar 8 OLI di Perairan Selat Lepar, Kabupaten Bangka Selatan. SAINTEK PERIKANAN : Indonesian Journal of Fisheries Science and Technology, 13(2), 75. https://doi.org/10.14710/ijfst.13.2.75-81
  46. Sippa Cipta Karya. (2017). Rencana Program Investasi Jangka Menengah Kabupaten Bangka Selatan. https://sippa.ciptakarya.pu.go.id/sippa_online/ws_file/dokumen/rpi2jm/DOCRPIJM_e6a506b29c_BAB IIBAB 2.pdf
  47. Takagi, H., Pratama, M. B., Kurobe, S., Esteban, M., Aránguiz, R., & Ke, B. (2019). Analysis of generation and arrival time of landslide tsunami to Palu City due to the 2018 Sulawesi earthquake. Landslides, 16, 983–991. https://doi.org/10.1007/s10346-019-01166-y
  48. Uihlein, A., & Magagna, D. (2016). Wave and tidal current energy - A review of the current state of research beyond technology. In Renewable and Sustainable Energy Reviews (Vol. 58, pp. 1070–1081). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.284
  49. Visit Bangka Belitung. (2017). Bab 4 Kondisi Umum Wilayah Provinsi Kepulauan Bangka Belitung. http://www.visitbangkabelitung.com/public/file/download/BAB_IV_-_VII.pdf
  50. Wolanski, E., & Elliott, M. (2016). Estuarine water circulation. In Estuarine Ecohydrology (pp. 35–76). Elsevier. https://doi.org/10.1016/b978-0-444-63398-9.00002-7

Last update:

  1. Tidal current power in Capalulu strait, North Maluku: A feasibility study

    Alamsyah Kurniawan, Maulvi Azmiwinata, Munawir Bintang Pratama, Cahya Kusuma. International Journal of Renewable Energy Development, 13 (3), 2024. doi: 10.61435/ijred.2024.60132

Last update: 2024-12-23 09:56:39

No citation recorded.