skip to main content

Water-Energy-Food Nexus Review for Biofuels Assessment

1The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand

2Center of Excellence on Energy Technology and Environment, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand

3Department of Environmental Engineering, Faculty of Engineering, Chiangmai University, Thailand

4 Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand

View all affiliations
Received: 1 Sep 2021; Revised: 24 Oct 2021; Accepted: 2 Nov 2021; Available online: 18 Nov 2021; Published: 1 Feb 2022.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The appropriate use of limited natural resources for generating basic human needs such as energy, food, and water, is essential to help the society function efficiently. Hence, a new approach called nexus is being considered to resolve the effects of intrinsic trade-offs between the essential needs. A review of different methods and frameworks of the water-energy-food nexus was done in this article to give a detailed repository of information on existing approaches and advocate the development of a more holistic quantitative nexus method. Assessing biofuels under the water-energy-food nexus perspective, this review addresses the sustainability of bioenergy production. The results show the countries that can sustainably produce first-generation biofuels. Only a few methods have varied interdisciplinary procedures to analyse the nexus, and more analytical software and data on resource availability/use are needed to address trade-offs between these interacting resource sectors constituting the nexus. Also, “land” is suggested as an additional sector to consider in future studies using both the nexus index and life cycle assessment methodology. The review reveals that to tackle composite challenges related to resource management, cross-disciplinary methods are essential to integrate environmental, socio-political facets of water, energy, and food; employ collaborative frameworks; and seek the engagement of decision-makers.

Fulltext View|Download
Keywords: Food; Biofuel; Bioenergy; Water; Policy; Framework

Article Metrics:

  1. Abunnour, M. A., Hashim, N. B. M., & Jaafar, M. B. (2016). Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya. E&ES, 37(1), 012045. doi: 10.1088/1755-1315/37/1/012045
  2. Albrecht, T. R., Crootof, A., & Scott, C. A. (2018). The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environmental Research Letters, 13(4), 043002. doi.org/10.1088/1748-9326/aaa9c6
  3. Bach H, Bird J, Clausen T.J, Jensen K.M, Lange R.B, Taylor R, Viriyasakultorn V and Wolf A (2012). Transboundary River Basin Management: Addressing Water, Energy and Food Security. Mekong River Commission, Lao PDR
  4. Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D. & Yumkella, K. K. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy policy, 39(12), 7896-7906. doi: 10.1016/j.enpol.2011.09.039
  5. Benites-Lazaro, L. L., Giatti, L. L., Sousa Junior, W. C., & Giarolla, A. (2020). Land-water-food nexus of biofuels: Discourse and policy debates in Brazil. Environmental Development, 33, 100491. doi: 10.1016/j.envdev.2019.100491
  6. Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., Horsley, J., Pauli, N. & Haworth, B. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54, 389-397. doi: 10.1016/j.envsci.2015.08.002
  7. Cai, X., Wallington, K., Shafiee-Jood, M., & Marston, L. (2018). Understanding and managing the food-energy-water nexus – opportunities for water resources research. Advances in Water Resources, 111, 259-273. https://doi.org/10.1016/j.advwatres.2017.11.014
  8. Chaudhuri, A. (2003). Three gorges dam: fortune or folly? MURG 8, 31–36
  9. Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresource technology, 102(2), 437-451. https://doi.org/10.1016/j.biortech.2010.08.010
  10. Cramer, J., Wissema, E., De Bruijne, M., Lammers, E., Dijk, D., Jager, H., & Kwant, K. (2007). Toetsingskader voor duurzame biomassa. Eindrapport van de projectgroep Duurzame Productie van Biomassa. Den Haag
  11. D’Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell’Angelo, J., Gephart, J., MacDonald, G. K., Seekell, D. A., Suweis, S., & Rulli, M. C. (2018). The Global Food-Energy-Water Nexus. Reviews of Geophysics, 56(3), 456–531. https://doi.org/10.1029/2017rg000591
  12. De Laurentiis, V., Hunt, D., & Rogers, C. (2016). Overcoming Food Security Challenges within an Energy/Water/Food Nexus (EWFN) Approach. Sustainability, 8(1), 95. https://doi.org/10.3390/su8010095
  13. Drews, M., Mikkelsen, P., Steen, Bauer-Gottwein, P., Vezzaro, L., Davidsen, C., Madsen, H., Christiansen, L., Engbo, Larsen, M., Dahl, Drews, M., Bauer-Gottwein, P., Vezzaro, P., Davidsen, L., Madsen, C., Christiansen, H., & Larsen, amp; (2016). Methodologies for managing the Energy-Water-Food nexus at different scales. http://orbit.dtu.dk/ws/files/127804507/DTU_INTERNATIONAL_ENERGY_R
  14. EIA (2015). International Energy Statistics. US Energy Information Administration. https://www.eia.gov/totalenergy/data/monthly/pdf/sec10_3.pdf
  15. El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7(6), 2857-2868. DOI: https://doi.org/10.1007/s13201-017-0551-3
  16. Energy Independence and Security Act (2007). U.S.A. Congress (EISA). Pub L No. 110–140 (2007)
  17. ESMAP. 2005. Potential for Biofuels for Transport in Developing Countries. Report 312/05. Washington, DC: World Bank
  18. European Union (2009). Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union, 5, 2009
  19. FAO (1996). Rome Declaration on World Food Security and World Food Summit Plan of Action. Rome: Food and Agriculture Organisation of the United Nations
  20. FAO (2013). Food and Agriculture Organization of the United Nations, FAOSTAT database
  21. FAO (2014). The Water-Energy-Food Nexus at FAO Concept Note ADVANCE COPY. (2014). https://www.gwp.org/globalassets/global/toolbox/references/the-water-energy-food-nexus-at-fao---concept-note-fao-2014.pdf
  22. FAO (2017). Food and Agriculture Organization of the United Nations, FAOSTAT database
  23. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. P. (2008) Land clearing and the biofuel carbon debt. Science, 319(5867), 1235-1238. DOI: 10.1126/science.1152747
  24. Ghani, H. U., Silalertruksa, T., & Gheewala, S. H. (2019). Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance. Science of the total environment, 687, 867-876. DOI: 10.1016/j.scitotenv.2019.05.465
  25. Gheewala, S. H., Berndes, G., & Jewitt, G. (2011). The bioenergy and water nexus. Biofuels, Bioproducts and Biorefining, 5(4), 353–360. https://doi.org/10.1002/bbb.295
  26. Giampietro, M., Aspinall, R. J., Bukkens, S. G. F., Cadillo Benalcazar, J., Flammini, A., Gomiero, T., & Serrano Tovar, T. (2013). An innovative accounting framework for the food-energy-water nexus: Application of the MuSIASEM approach to three case studies. FAO, Roma (Italia)
  27. Giampietro, M., Mayumi, K., & Ramos-Martin, J. (2009). Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy, 34(3), 313–322. https://doi.org/10.1016/j.energy.2008.07.020
  28. Giupponi, C., & Gain, A. K. (2016). Integrated spatial assessment of the water, energy, and food dimensions of the Sustainable Development Goals. Regional Environmental Change, 17(7), 1881–1893. https://doi.org/10.1007/s10113-016-0998-z
  29. Gulati, M., Jacobs, I., Jooste, A., Naidoo, D., & Fakir, S. (2013). The water–energy–food security nexus: challenges and opportunities for food security in South Africa. Aquatic Procedia, 1, 150-164. https://doi.org/10.1016/j.aqpro.2013.07.013
  30. Hailemariam, W. G., Silalertruksa, T., Gheewala, S. H., & Jakrawatana, N. (2019). Water–energy–food nexus of sugarcane production in Ethiopia. Environmental Engineering Science, 36(7), 798-807. https://doi.org/10.1089/ees.2018.0549
  31. Hanlon, P., Madel, R., Olson-Sawyer, K., Rabin, K., & Rose, J. (2013). Food, water and energy: know the nexus. GRACE Communications Foundation, 32
  32. Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain's water-energy nexus. International Journal of Water Resources Development, 28(1), 151-170
  33. Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M. (2011). The water footprint assessment manual setting the global standard. Earthscan, London
  34. Hoff, H. (2011). Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute, Stockholm
  35. Howells, M., Hermann, S., Welsch, M., Bazilian, M., Segerström, R., Alfstad, T. & Wiberg, D. (2013). Integrated analysis of climate change, land-use, energy, and water strategies. Nature Climate Change, 3(7), 621-626. https://doi.org/10.1038/nclimate1789
  36. Intergovernmental Panel on Climate Change (2014). Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 2014
  37. Italian Ministry of Economic Development (2015). Statistics on biofuel. Available at https://www.mise.gov.it/index.php/it/energia/fonti-rinnovabili-e-georisorse/biocarburanti (Date of access: 03/11/2020)]
  38. IWMI (2012). Water Figures. International Water Management Institute. http://www.iwmi.cgiar.org/News_Room/Newsletters/Water_Figures/PDFs/WF-July_2012.pdf
  39. Jaroenkietkajorn, U., & Gheewala, S. H. (2020). Interlinkage between water-energy-food for oil palm cultivation in Thailand. Sustainable Production and Consumption, 22, 205–217. https://doi.org/10.1016/j.spc.2020.03.006
  40. Keairns, D. L., Darton, R. C., & Irabien, A. (2016). The energy-water-food nexus. Annual review of chemical and biomolecular engineering, 7, 239-262. https://doi.org/10.1146/annurev-chembioeng-080615-033539
  41. Lawford, R., Bogardi, J., Marx, S., Jain, S., Wostl, C. P., Knüppe, K., Ringler, C., Lansigan, F., & Meza, F. (2013). Basin perspectives on the Water–Energy–Food Security Nexus. Current Opinion in Environmental Sustainability, 5(6), 607–616. https://doi.org/10.1016/j.cosust.2013.11.005
  42. Lin, J., Kang, J., Bai, X., Li, H., Lv, X., & Kou, L. (2019). Modeling the urban water-energy nexus: A case study of Xiamen, China. Journal of Cleaner Production, 215, 680–688. https://doi.org/10.1016/j.jclepro.2019.01.063
  43. Liu, J., Yang, H., Cudennec, C., Gain, A. K., Hoff, H., Lawford, R. & Zheng, C. (2017). Challenges in operationalizing the water–energy–food nexus. Hydrological Sciences Journal, 62(11), 1714-1720. https://doi.org/10.1080/02626667.2017.1353695
  44. López-Díaz, D. C., Lira-Barragán, L. F., Rubio-Castro, E., Serna-González, M., El-Halwagi, M. M., &
  45. Ponce-Ortega, J. M. (2017). Optimization of biofuels production via a water–energy–food nexus framework. Clean Technologies and Environmental Policy, 20(7), 1443–1466. https://doi.org/10.1007/s10098-017-1395-0
  46. Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water Footprint of crop productions: A review. Science of the Total Environment, 548-549, 236–251. https://doi.org/10.1016/j.scitotenv.2016.01.022
  47. Mekonnen, M. M., Romanelli, T. L., Ray, C., Hoekstra, A. Y., Liska, A. J., & Neale, C. M. (2018). Water, energy, and carbon footprints of bioethanol from the US and Brazil. Environmental Science & Technology, 52(24), 14508-14518. DOI: 10.1021/acs.est.8b03359
  48. Miara, A., Pienkos, P. T., Bazilian, M., Davis, R., & Macknick, J. (2014). Planning for Algal Systems: An Energy-Water-Food Nexus Perspective. Industrial Biotechnology, 10(3), 202–211. https://doi.org/10.1089/ind.2014.0004
  49. Millennium Ecosystem Assessment and World Resources Institute (2005). Ecosystems and Human Well-being: General Synthesis. Washington, DC: Island Press; 2005
  50. Moioli, E., Manenti, F., & Rulli, M. C. (2016). Assessment of global sustainability of bioenergy production in a water-food-energy perspective. Chemical Engineering Transactions, 50, 343-348. DOI: 10.3303/CET1650058
  51. Moioli, E., Salvati, F., Chiesa, M., Siecha, R. T., Manenti, F., Laio, F., & Rulli, M. C. (2018). Analysis of the current world biofuel production under a water–food–energy nexus perspective. Advances in water resources, 121, 22-31. DOI: 10.1016/j.advwatres.2018.07.007
  52. Mosdale, D. M. (2008). In Biofuels: Biotechnology, Chemistry and Sustainable Development (ed. Mosdale, D. M.), (CRC Press, Taylor and Francis, 2008)
  53. Mukuve, F. M., & Fenner, R. A. (2015). Scale variability of water, land, and energy resource interactions and their influence on the food system in Uganda. Sustainable Production and Consumption, 2, 79-95. https://doi.org/10.1016/j.spc.2015.07.009
  54. Ngammuangtueng, P., Jakrawatana, N., Nilsalab, P., & Gheewala, S. H. (2019). Water, Energy and Food Nexus in Rice Production in Thailand. Sustainability, 11(20), 5852. https://doi.org/10.3390/su11205852
  55. Nigerian National Petroleum Corporation (2007). Draft Nigerian bio-fuel policy and incentives. Abuja, Nigeria: Nigerian National Petroleum Corporation
  56. Rasul, G. (2016). Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environmental Development, 18, 14–25. https://doi.org/10.1016/j.envdev.2015.12.001
  57. Rasul, G., & Sharma, B. (2015). The nexus approach to water–energy–food security: an option for adaptation to climate change. Climate Policy, 16(6), 682–702. https://doi.org/10.1080/14693062.2015.1029865
  58. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E. & Nykvist, B. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and society, 14(2), 32. http://www.ecologyandsociety.org/vol14/iss2/art32/
  59. Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G., & D’Odorico, P. (2016). The water-land-food nexus of first-generation biofuels. Scientific reports, 6(1), 1-10. https://doi.org/10.1038/srep22521
  60. RTFO (2019). Renewable Fuel Statistics. GOV.UK. https://www.gov.uk/government/collections/renewable-fuel-statistics
  61. Saboori, B., Sapri, M., & bin Baba, M. (2014). Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach. Energy, 66, 150-161. https://doi.org/10.1016/j.energy.2013.12.048
  62. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J. & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238-1240. https://doi.org/10.1126/science.1151861
  63. Sieber, J. (2019). WEAP: Water Evaluation and Planning System. Weap21.Org. http://www.weap21.org/
  64. Sieminski, A. (2014). International Energy Outlook. Energy Information Administration (EIA), 18
  65. Silalertruksa, T., & Gheewala, S. H. (2018). Land-water-energy nexus of sugarcane production in Thailand. Journal of Cleaner Production, 182, 521-528. https://doi.org/10.1016/J.JCLEPRO.2018.02.085
  66. Silalertruksa, T., & Gheewala, S. H. (2019). Land–Water–Energy Nexus of Biofuels Development in Emerging Economies. The Role of Bioenergy in the Bioeconomy, 379–402. https://doi.org/10.1016/b978-0-12-813056-8.00008-x
  67. Small, H. (1997). Update on science mapping: Creating large document spaces. Scientometrics, 38(2), 275-293
  68. Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world. Energy policy, 38(11), 6977-6988. https://doi.org/10.1016/j.enpol.2010.06.066
  69. Statista (2019). Fuel ethanol production in major countries. Retrieved January 26, 2021, from https://www.statista.com/statistics/281606/ethanol-production-in-selectedcountries/
  70. Swedish Energy Agency (2015). Sustainable biofuel and bioliquids Technical Report. Available at https://energimyndigheten.a-w2m.se/ (Date of access: 15/07/2020)
  71. UNEP (2011). Green economy. UNEP - UN Environment Programme. Retrieved October 19, 2020, from http://www.unep.org/greeneconomy/
  72. USDA (2021). World Agricultural Production. Available at https://apps.fas.usda.gov/psdonline/circulars/production.pdf (Date of access: 15/01/2021)
  73. Villarroel Walker, R., Beck, M. B., Hall, J. W., Dawson, R. J., & Heidrich, O. (2014). The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism. Journal of Environmental Management, 141, 104–115. https://doi.org/10.1016/j.jenvman.2014.01.054
  74. Vlotman, W. F., & Ballard, C. (2014). WATER, FOOD AND ENERGY SUPPLY CHAINS FOR A GREEN ECONOMY. Irrigation and Drainage, 63(2), 232–240. https://doi.org/10.1002/ird.1835
  75. WBGU (2010). German Advisory Council on Global Change. Future bioenergy and sustainable land use. Earthscan, London, UK
  76. Weitz, N., Nilsson, M., & Davis, M. (2014). A Nexus Approach to the Post-2015 Agenda: Formulating Integrated Water, Energy, and Food SDGs. SAIS Review of International Affairs, 34(2), 37–50. https://doi.org/10.1353/sais.2014.0022
  77. World Bank (2016), Final Report on Biomass Atlas for Pakistan. Available at: http://pubdocs.worldbank.org/en/986571469213209777/Pakistan-Biomass-Mapping-FinalReport-WB-ESMAP-July2016.pdf
  78. World Bioenergy Association (2019). Global Bioenergy Statistics 2019, World Bioenergy Association. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf
  79. World Economic Forum (2011). Global Risks: An initiative of the Risk Response Network. Sixth Edition. Cologne/Geneva, Switzerland: World Economic Forum; 2011
  80. World Water Assessment Programme (2009). The United Nations World Water Development Report 3: Water in a Changing World. Paris: UNESCO, and London: Earthscan
  81. Yuan, K.-Y., Lin, Y.-C., Chiueh, P.-T., & Lo, S.-L. (2018). spatial optimization of the food, energy, and water nexus: A life cycle assessment-based approach. Energy Policy, 119, 502–514. https://doi.org/10.1016/j.enpol.2018.05.009
  82. Zhang, C., Chen, X., Li, Y., Ding, W., & Fu, G. (2018). Water-energy-food nexus: Concepts, questions, and methodologies. Journal of Cleaner Production, 195, 625-639. https://doi.org/10.1016/j.jclepro.2018.05.194

Last update:

  1. A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives

    Haixin Jiao, Sameh S. Ali, Mohammed Husssein M. Alsharbaty, Tamer Elsamahy, Esraa Abdelkarim, Michael Schagerl, Rania Al-Tohamy, Jianzhong Sun. Ecotoxicology and Environmental Safety, 271 , 2024. doi: 10.1016/j.ecoenv.2024.115942
  2. Investigation of the interactions and influencing variables between water and land resources in the upper Yellow River's wind-sand region

    Jiaxin Li, Xiaopeng Liu, Wei Huang, Li Wei, Xinyan Li, Haiyan Gao. Ecological Indicators, 154 , 2023. doi: 10.1016/j.ecolind.2023.110554
  3. A comprehensive classification of food-energy-water nexus optimization studies: State of the art

    Marcello Di Martino, Patrick Linke, Efstratios N. Pistikopoulos. Journal of Cleaner Production, 2023. doi: 10.1016/j.jclepro.2023.138293
  4. A New Flexible and Widely Software to Achieve Sustainable Agriculture based on Water-Energy-Food Nexus

    Rezvan Khosravi, Arash Azari, Ali Bafkar. Water Resources Management, 38 (13), 2024. doi: 10.1007/s11269-024-03904-x
  5. The Water–Energy Nexus in 26 European Countries: A Review from a Hydrogeological Perspective

    Somayeh Rezaei Kalvani, Riccardo Pinardi, Fulvio Celico. Water, 16 (20), 2024. doi: 10.3390/w16202981
  6. Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review

    Somayeh Rezaei Kalvani, Fulvio Celico. Sustainability, 16 (7), 2024. doi: 10.3390/su16072605
  7. A comprehensive classification of food–energy–water nexus optimization studies: State of the art

    Marcello Di Martino, Patrick Linke, Efstratios N. Pistikopoulos. Journal of Cleaner Production, 420 , 2023. doi: 10.1016/j.jclepro.2023.138293
  8. Optimizing the Nonconventional Water Supply across the Water-Energy-Food Nexus for Arid Regions Using a Life Cycle Assessment

    Esra Aleisa, Sara Al-Haddad. Journal of Water Resources Planning and Management, 150 (12), 2024. doi: 10.1061/JWRMD5.WRENG-6103
  9. Strategies for efficient management of microplastics to achieve life cycle assessment and circular economy

    Tamer Elsamahy, Rania Al-Tohamy, Esraa A. Abdelkarim, Daochen Zhu, Mostafa El-Sheekh, Jianzhong Sun, Sameh S. Ali. Environmental Monitoring and Assessment, 195 (11), 2023. doi: 10.1007/s10661-023-11955-7

Last update: 2024-11-04 12:10:42

No citation recorded.