skip to main content

Study on the Potential for Biodiesel Production of Microalgal Consortia from Brackish Water Environment in Rayong Province, Thailand

Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong Campus, Bankhai, Rayong 21120, Thailand

Received: 2 Apr 2022; Revised: 19 Jun 2022; Accepted: 22 Jul 2022; Available online: 28 Jul 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Microalgae are photoautotrophic microorganisms that can be grown in a wide variety of water environments. They are the most promising biodiesel source, with the potential to replace fossil diesel. In this study, microalgae samples were collected from the brackish water environment of three locations in Rayong province, Thailand including Phra Chedi Klang Nam (PKC), Noen Kho Canal (NKC), and Raksamae Bridge (RSM), and induced to form multi-algae communities or microalgal consortia (MC). All consortia were cultured and analyzed for their ability to produce biomass and lipid. The result was found that the biomass concentration of MC-RSM was 0.65 ± 0.05 mg.L-1, which is higher than 1.2 and 1.5-times of MC-PCK and MC-NKC, respectively. The most common microalgae species found under all cultures were green algae (Chlorophyta) and diatom (Bacillariophyta), and the dominant species was the green algae, Chlorella sp. The lipid content of all samples ranged from 28.07 ± 0.60 to 33.21 ± 0.79% of dry weight, and the highest value was noticed in the MC-RSM sample. The fatty acid composition of fatty acid methyl ester (FAME) was also evaluated as feasibility for biodiesel production. FAME profiles of each sample showed high amounts of saturated fatty acids (SFAs) ranging from 67.82%-71.31% of total fatty acids. The majority of the SFAs in all were palmitic acid (C16:0) followed by myristic acid (C14:0, and stearic acid (C18:0). Therefore, all microalgal consortia showed great fatty acid profiles and these have the potential for use as feedstock for biodiesel production.
Fulltext View|Download
Keywords: Microalgal consortia; brackish water; lipid; FAME; biodiesel production
Funding: King Mongkut’s University of Technology North Bangkok under contract KMUTNB-61-NEW-007.

Article Metrics:

  1. Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 11(3), 311-326; doi: 10.1007/s40095-019-00333-0
  2. Alam, M. M., Mumtaz, A. S., Russell, M., Grogger, M., Veverka, D., & Hallenbeck, P. C. (2019). Isolation and characterization of microalgae from diverse Pakistani habitats: Exploring third-generation biofuel potential. Energies, 12(14), 2660; doi: 10.3390/en12142660
  3. Arora, N., & Philippidis, G. P. (2021). Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Scientific reports, 11(1), 1-14; doi: 10.1038/s41598-021-86372-2
  4. Boonma, S., Takarada, T., Peerapornpisal, Y., Pumas, C., & Chaiklangmuang, S. (2019). Semi-continuous cultivation of microalgal consortium using low CO2 concentration for large-scale biofuel production. Journal of Biotech Research, 10, 19-28
  5. Cao, Z., Shen, X., Wang, X., Zhu, B., Pan, K., & Li, Y. (2022). Effect of Nitrogen Concentration on the Alkalophilic Microalga Nitzschia sp. NW129-a Promising Feedstock for the Integrated Production of Lipids and Fucoxanthin in Biorefinery. Frontiers in Marine Science; doi: 10.3389/fmars.2021.830590
  6. Chankhong, K., Chotigeat, W., & Iewkittayakorn, J. (2018). Effects of culture medium on growth kinetics and fatty acid composition of Chlorella sp. T12. Songklanakarin Journal of Science and Technology, 40(5), 1098-1104; doi: 10.14456/sjst-psu.2018.136
  7. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294-306; doi: 10.1016/j.biotechadv.2007.02.001
  8. Cobos, M., Paredes, J. D., Maddox, J. D., Vargas-Arana, G., Flores, L., Aguilar, C. P., ... & Castro, J. C. (2017). Isolation and characterization of native microalgae from the Peruvian Amazon with potential for biodiesel production. Energies, 10(2), 224; doi: 10.3390/en10020224
  9. d’Ippolito, G., Sardo, A., Paris, D., Vella, F. M., Adelfi, M. G., Botte, P., ... & Fontana, A. (2015). Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnology for biofuels, 8(1), 1-10; doi: 10.1186/s13068-015-0212-4
  10. Demirel, Z., Imamoglu, E., & Dalay, M. C. (2017). Screening of fatty acid composition in Nitzschia sp. Turkish Journal of Biochemistry, 42(3), 273-277; doi: 10.1515/tjb-2016-0294
  11. Duong, V. T., Thomas-Hall, S. R., & Schenk, P. M. (2015). Growth and lipid accumulation of microalgae from fluctuating brackish and sea water locations in South East Queensland—Australia. Frontiers in plant science, 6, 359; doi: 10.3389/fpls.2015.00359
  12. Fuad, M.T.K., Khalid, A.A.H., & Kamarudin, K.F. (2021) Sustainable cultivation of Desmodesmus armatus SAG276.4d using leachate as a growth supplement for simultaneous biomass production and CO2 fixation. Int. Journal of Renewable Energy Development, 10(4), 865-873, doi: 10.14170/ijred.2021.37683
  13. Godwin, C. M., Hietala, D. C., Lashaway, A. R., Narwani, A., Savage, P. E., & Cardinale, B. J. (2017). Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresource technology, 224, 630-638;
  14. Janta, K., Pekkoh, J., Tongsiri, S., Pumas, C., & Peerapornpisal, Y. (2013). Selection of some native microalgal strains for possibility of bio-oil production in Thailand. Chiang Mai Journal of Science, 40(4), 593-602
  15. Khan, M. A. H., Bonifacio, S., Clowes, J., Foulds, A., Holland, R., Matthews, J. C., ... & Shallcross, D. E. (2021). Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere, 12(10), 1289; doi: 10.3390/atmos12101289
  16. Kumar, G., Huy, M., Bakonyi, P., Bélafi-Bakó, K., & Kim, S. H. (2018). Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnology Reports, 20, e00289; doi: 10.1016/j.btre.2018.e00289
  17. Lamaisri, C., Punsuvon, V., Chanprame, S., Arunyanark, A., Srinives, P., & Liangsakul, P. (2015). Relationship between fatty acid composition and biodiesel quality for nine commercial palm oils. Songklanakarin Journal of Science & Technology, 37(4), 389-395
  18. Mahmoud, E. A., Farahat, L. A., Aziz, Z. K. A., Fatthallah, N. A., & El Din, R. A. S. (2015). Evaluation of the potential for some isolated microalgae to produce biodiesel. Egyptian Journal of Petroleum, 24(1), 97-101; doi: 10.1016/j.ejpe.2015.02.010
  19. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232; doi: 10.1016/j.rser.2009.07.020
  20. Mohammady, N. G. E. (2011). Characterization of the fatty acid composition of Nannochloropsis salina as a determinant of biodiesel properties. Zeitschrift für Naturforschung C, 66(7-8), 328-332; doi: 10.1515/znc-2011-7-802
  21. Nthunya, L. N., Maifadi, S., Mamba, B. B., Verliefde, A. R., & Mhlanga, S. D. (2018). Spectroscopic determination of water salinity in brackish surface water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water, 10(8), 990; doi: 10.3390/w10080990
  22. Omirou, M., Tzovenis, I., Charalampous, P., Tsaousis, P., Polycarpou, P., Chantzistrountsiou, X., ... & Ioannides, I. M. (2018). Development of marine multi-algae cultures for biodiesel production. Algal Research, 33, 462-469; doi: 10.1016/j.algal.2018.06.025
  23. Podkuiko, L., Kasemets, M. L., Kikas, T., & Lips, I. (2020). Cultivation of algae polyculture in municipal wastewater with CO2 supply. Environmental and Climate Technologies, 24(3), 188-200; doi: 10.2478/rtuect-2020-0096
  24. Pollution Control Department. (2000). Water Quality Standards & Criteria in Thailand (in Thai). 4th ed, Ministry of Science, Technology and Environment
  25. Qin, L., Wang, Z., Sun, Y., Shu, Q., Feng, P., Zhu, L., ... & Yuan, Z. (2016). Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environmental science and pollution research, 23(9), 8379-8387; doi: 10.1007/s11356-015-6004-3
  26. Rai, S. V., & Rajashekhar, M. (2014). Effect of pH, salinity and temperature on the growth of six species of marine phytoplankton. Journal of Algal Biomass Utilization, 5(4), 55-59
  27. Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. In IOP conference series: earth and environmental science (Vol. 118, No. 1, p. 012019). IOP Publishing; doi: 10.1088/1755-1315/118/1/012019
  28. Secretariat, A. S. E. A. N. (2008). ASEAN Marine Water Quality Management Guidelines and Monitoring Manual. Australia Marine Science and Technology Ltd.(AMSAT), Australia
  29. Shah, M. M. R., Alam, M. J., Islam, M. L., & Khan, M. S. A. (2003). Growth performances of three microalgal species in filtered brackishwater with different inorganic media. Bangladesh Journal of Fisheries Research, 7(1), 69-76
  30. Sharma, J., Kumar, V., Kumar, S. S., Malyan, S. K., Mathimani, T., Bishnoi, N. R., & Pugazhendhi, A. (2020). Microalgal consortia for municipal wastewater treatment–lipid augmentation and fatty acid profiling for biodiesel production. Journal of Photochemistry and Photobiology B: Biology, 202, 111638; doi: 10.1016/j.jphotobiol.2019.111638
  31. Shurin, J. B., Abbott, R. L., Deal, M. S., Kwan, G. T., Litchman, E., McBride, R. C., ... & Smith, V. H. (2013). Industrial‐strength ecology: trade‐offs and opportunities in algal biofuel production. Ecology letters, 16(11), 1393-1404; doi: 10.1111/ele.12176
  32. Slover, H. T., & Lanza, E. (1979). Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists' Society, 56(12), 933-943; doi: 10.1007/BF02674138
  33. Tayari, S., Abedi, R., & Abedi, A. (2020). Investigation on physicochemical properties of wastewater grown microalgae methyl ester and its effects on CI engine. Rigas Tehniskas Universitates Zinatniskie Raksti, 24(1), 72-87; doi: 10.2478/rtuect-2020-0005
  34. Telesh, I. V., & Khlebovich, V. V. (2010). Principal processes within the estuarine salinity gradient: a review. Marine Pollution Bulletin, 61(4-6), 149-155; doi: 10.1016/j.marpolbul.2010.02.008
  35. Thao, T. Y., Linh, D. T. N., Si, V. C., Carter, T. W., & Hill, R. T. (2017). Isolation and selection of microalgal strains from natural water sources in Viet Nam with potential for edible oil production. Marine drugs, 15(7), 194; doi: 10.3390/md15070194
  36. Veillette, M., Chamoumi, M., Nikiema, J., Faucheux, N. and Heitz, M. (2012). Production of biodiesel from microalgae. Advances in Chemical Engineering, 10, 245-260; doi: 10.5772/31368
  37. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., ... & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied biochemistry and biotechnology, 162(4), 1174-1186; doi: 10.1007/s12010-009-8866-7
  38. Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115; doi: 10.1061/(ASCE)EE.1943-7870.0000129
  39. Yadavalli, R., Rao, S.R. and Rao, C.S. 2012. Lipid accumulation studies in Chlorella pyrenoidosa using customized photobioreactor- effect of nitrogen source, light intensity and mode of operation. International Journal of Engineering Research and Applications, 2(3), 2446-2453
  40. Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology, 101(1):s71-s74; doi: 10.1016/j.biortech.2009.03.030
  41. Zhang, K., Sun, B., She, X., Zhao, F., Cao, Y., Ren, D., & Lu, J. (2014). Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Annals of microbiology, 64(3), 1239-1246; doi: 10.1007/s13213-013-0766-y

Last update:

  1. Biodiesel unsaturation and the synergic effects of hydrogen sharing rate on the characteristics of a compression ignition engine in dual-fuel mode

    C. Prabhu, B. Navaneetha Krishnan, T. Prakash, V. Rajasekar, Dhinesh Balasubramanian, Van Vang Le, Nguyen Viet Linh Le, Phuoc Quy Phong Nguyen, Van Nhanh Nguyen. Fuel, 334 , 2023. doi: 10.1016/j.fuel.2022.126699

Last update: 2023-10-03 04:34:04

No citation recorded.