skip to main content

Numerical Investigation of a New Modified Savonius Wind Turbines

Laboratory of Electronic Systems, Information Processing, Mechanics and Energy, Faculty of Science, Ibn Tofail University, B.P 133, 14000, Kenitra, Morocco

Received: 15 Apr 2022; Revised: 25 Jul 2022; Accepted: 7 Aug 2022; Available online: 15 Aug 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The classic Savonius semi-circular blade turbine has a relatively low power coefficient.The performance of a Savonius wind turbine depends on its geometrical parameters. Various blade profiles have been developed in the past years to improve the performance of this class of turbine. In this paper, a new blade shapes of Savonius wind turbine is investigated numerically by using the CFD method , by using transient conditions and set k omega turbulence model.The new blade has different concave and convex shape, which is a combination of the conventional and the elliptical blade. A comparative study of three blade profiles, semi-circular, elliptical and the composed blades have been performed.Flow structures around the rotor have also been analyzed. The results show that changing the blade shape has an effect on the performance efficiency of the Savonius turbine.The new modified and the elliptical blade exhibit higher performance compared to the conventional Savonius wind turbine. The new modified Savonius blade and the elliptical blade exhibit an improved performance compared to the conventional model in the order of 20.5% and 18.2% respectively at the tip speed ratio of 0.8.
Fulltext View|Download
Keywords: Savonius rotor; Wind energy; Wind turbine; Composed blade, power coefficient.

Article Metrics:

  1. Abdelaziz, K. R., Nawar, M. A., Ramadan, A., Attai, Y. A., & Mohamed, M. H. (2022). Performance improvement of a Savonius turbine by using auxiliary blades. Energy, 244, 122575. https://doi.org/10.1016/j.energy.2021.122575
  2. Afroz, Z., Islam, M. Q., & Ali, M. (2012). Aerodynamic studies on multi-bladed S-shaped vane type rotor. 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012), 1‑3
  3. Akwa, J. V., da Silva Júnior, G. A., & Petry, A. P. (2012). Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renewable energy, 38(1), 141‑149. https://doi.org/10.1016/j.renene.2011.07.013
  4. Alexander, A. J., & Holownia, B. P. (1978). Wind tunnel tests on a Savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics, 3(4), 343‑351. https://doi.org/10.1016/0167-6105(78)90037-5
  5. Al-Ghriybah, M., Zulkafli, M. F., Didane, D. H., & Mohd, S. (2021). The effect of spacing between inner blades on the performance of the Savonius wind turbine. Sustainable Energy Technologies and Assessments, 43, 100988. https://doi.org/10.1016/j.seta.2020.100988
  6. Alom, N., & Saha, U. K. (2018). Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments. Energy, 152, 277‑290. https://doi.org/10.1016/j.energy.2018.03.136
  7. Altan, B. D., & Atılgan, M. (2010). The use of a curtain design to increase the performance level of a Savonius wind rotors. Renewable Energy, 35(4), 821‑829. https://doi.org/10.1016/j.renene.2009.08.025
  8. Antar, E., & Elkhoury, M. (2019). Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine. Renewable Energy, 136, 127‑138. https://doi.org/10.1016/j.renene.2018.12.092
  9. Banerjee, A., Roy, S., Mukherjee, P., & Saha, U. K. (2014). Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. Gas Turbine India Conference, 49644, V001T05A001. https://doi.org/10.1115/GTINDIA2014-8141
  10. Blackwell, B. F., Feltz, L. V., & Sheldahl, R. E. (1977). Wind tunnel performance data for two-and three-bucket Savonius rotors. Sandia Laboratories Albuquerque, New Mexico
  11. Celik, I. B. (1999). Introductory turbulence modeling. Virginia, Western Virginia University
  12. Chen, Y., Guo, P., Zhang, D., Chai, K., Zhao, C., & Li, J. (2022). Power improvement of a cluster of three Savonius wind turbines using the variable-speed control method. Renewable Energy. https://doi.org/10.1016/j.renene.2022.05.062
  13. El-Askary, W. A., Nasef, M. H., Abdel-Hamid, A. A., & Gad, H. E. (2015). Harvesting wind energy for improving performance of Savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics, 139, 8‑15. https://doi.org/10.1016/j.jweia.2015.01.003
  14. Emmanuel, B., & Jun, W. (2011). Numerical study of a six-bladed Savonius wind turbine. Journal of Solar Energy Engineering, 133(4). https://doi.org/10.1115/1.4004549
  15. Ferdoues, M. S., Ebrahimi, S., & Vijayaraghavan, K. (2017). Multi-objective optimization of the design and operating point of a new external axis wind turbine. Energy, 125, 643‑653. https://doi.org/10.1016/j.energy.2017.01.070
  16. Ferrari, G., Federici, D., Schito, P., Inzoli, F., & Mereu, R. (2017). CFD study of Savonius wind turbine : 3D model validation and parametric analysis. Renewable energy, 105, 722‑734. https://doi.org/10.1016/j.renene.2016.12.077
  17. Fujisawa, N., & Gotoh, F. (1992). Pressure measurements and flow visualization study of a Savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics, 39(1‑3), 51‑60. https://doi.org/10.1016/0167-6105(92)90532-F
  18. He, D. (2017). Aerodynamic shape optimization of Savonius wind turbines. HKUST Thesis. https://doi.org/10.14711/thesis-991012551768203412
  19. Jian, C., Kumbernuss, J., Linhua, Z., Lin, L., & Hongxing, Y. (2012). Influence of phase-shift and overlap ratio on Savonius wind turbine’s performance. Journal of solar energy engineering, 134(1). https://doi.org/10.1115/1.4004980
  20. Kacprzak, K., Liskiewicz, G., & Sobczak, K. (2013). Numerical investigation of conventional and modified Savonius wind turbines. Renewable energy, 60, 578‑585. https://doi.org/10.1016/j.renene.2013.06.009
  21. Kalluvila, J. B., & Sreejith, B. (2018). Numerical and experimental study on a modified Savonius rotor with guide blades. International journal of green energy, 15(12), 744‑757. https://doi.org/10.1080/15435075.2018.1529574
  22. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2008). Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. International journal of energy research, 32(10), 877‑895. https://doi.org/10.1002/er.1399
  23. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2009a). Experimental investigations on single stage modified Savonius rotor. Applied Energy, 86(7‑8), 1064‑1073. https://doi.org/10.1016/j.apenergy.2008.09.019
  24. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2009b). Performance tests on helical Savonius rotors. Renewable Energy, 34(3), 521‑529. https://doi.org/10.1016/j.renene.2008.06.002
  25. Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19‑25. https://doi.org/10.1016/j.aej.2012.07.003
  26. Mahmud, M. S., Reza, K. N., & Rahman, M. Z. (2018). Performance Study of a Small-Scale Water Current Turbine
  27. Mari, M., Venturini, M., & Beyene, A. (2017). A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept. Journal of Energy Resources Technology, 139(6). https://doi.org/10.1115/1.4036964
  28. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598‑1605. https://doi.org/10.2514/3.12149
  29. Mishra, A., Kumar, G., & De, A. (2019). Prediction of separation induced transition on thick airfoil using non-linear URANS based turbulence model. Journal of Mechanical Science and Technology, 33(5), 2169‑2180. https://doi.org/10.1007/s12206-019-0419-6
  30. Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2010). Optimization of Savonius turbines using an obstacle shielding the returning blade. Renewable Energy, 35(11), 2618‑2626. https://doi.org/10.1016/j.renene.2010.04.007
  31. Mohamed, M. H., Janiga, G., Pap, E., & Thévenin, D. (2011). Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Conversion and Management, 52(1), 236‑242. https://doi.org/10.1016/j.enconman.2010.06.070
  32. Mojola, O. O. (1985). On the aerodynamic design of the Savonius windmill rotor. Journal of Wind Engineering and Industrial Aerodynamics, 21(2), 223‑231. https://doi.org/10.1016/0167-6105(85)90005-4
  33. Morcos, S. M., Khalafallah, M. G., & Heikel, H. A. (1981). The effect of shielding on the aerodynamic performance of Savonius wind turbines. 16th Intersociety Energy Conversion Engineering Conference, 2037‑2040
  34. Mrigua, K., Toumi, A., Zemamou, M., Ouhmmou, B., Lahlou, Y., & Aggour, M. (2020). CFD Investigation of A New Elliptical-Bladed Multistage Savonius Rotors. International Journal of Renewable Energy Development, 9(3). https://doi.org/10.14710/ijred.2020.30286
  35. Nasef, M. H., El-Askary, W. A., Abdel-Hamid, A. A., & Gad, H. E. (2013). Evaluation of Savonius rotor performance : Static and dynamic studies. Journal of Wind Engineering and Industrial Aerodynamics, 123, 1‑11. https://doi.org/10.1016/j.jweia.2013.09.009
  36. Roy, S., Mukherjee, P., & Saha, U. K. (2014). Aerodynamic performance evaluation of a novel Savonius-style wind turbine under an oriented jet. ASME 2014 Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2014-8152
  37. Roy, S., & Saha, U. K. (2013a). Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine. Procedia Engineering, 51, 694‑702. https://doi.org/10.1016/j.proeng.2013.01.099
  38. Roy, S., & Saha, U. K. (2013b). Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(4), 528‑542. https://doi.org/10.1177/0957650913480992
  39. Saeed, H. A. H., Elmekawy, A. M. N., & Kassab, S. Z. (2019). Numerical study of improving Savonius turbine power coefficient by various blade shapes. Alexandria Engineering Journal, 58(2), 429‑441. https://doi.org/10.1016/j.aej.2019.03.005
  40. Salleh, M. B., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2020). The effects of deflector longitudinal position and height on the power performance of a conventional savonius turbine. Energy Conversion and Management, 226, 113584. https://doi.org/10.1016/j.enconman.2020.113584
  41. Sanusi, A., Soeparman, S., Wahyudi, S., & Yuliati, L. (2016a). Experimental study of combined blade savonius wind turbine. International Journal of Renewable Energy Research (IJRER), 6(2), 614‑619. https://doi.org/10.20508/ijrer.v6i2.3455.g6826
  42. Savonius, S. J. (1931). The S-rotor and its applications. Mechanical engineering, 53(5), 333‑338
  43. Shaughnessy, B. M., & Probert, S. D. (1992). Partially-blocked Savonius rotor. Applied Energy, 43(4), 239‑249. https://doi.org/10.1016/0306-2619(92)90024-6
  44. Sheldahl, R. E., Blackwell, B. F., & Feltz, L. V. (1978a). Wind tunnel performance data for two-and three-bucket Savonius rotors. Journal of Energy, 2(3), 160‑164. https://doi.org/10.2514/3.47966
  45. Sobczak, K. (2018). Numerical investigations of an influence of the aspect ratio on the Savonius rotor performance. Journal of Physics: Conference Series, 1101(1), 012034. https://doi.org/10.1088/1742-6596/1101/1/012034
  46. Song, C., Zheng, Y., Zhao, Z., Zhang, Y., Li, C., & Jiang, H. (2015). Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines. Journal of Renewable and Sustainable Energy, 7(3), 033111. https://doi.org/10.1063/1.4921578
  47. Tartuferi, M., D’Alessandro, V., Montelpare, S., & Ricci, R. (2015). Enhancement of Savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems. Energy, 79, 371‑384. https://doi.org/10.1016/j.energy.2014.11.023
  48. Ushiyama, I., & Nagai, H. (1988). Optimum design configurations and performance of Savonius rotors. Wind Engineering, 59‑75
  49. Youssef, K. M., El Kholy, A. M., Hamed, A. M., Mahmoud, N. A., El Baz, A. M., & Mohamed, T. A. (2020). An innovative augmentation technique of savonius wind turbine performance. Wind Engineering, 44(1), 93‑112. https://doi.org/10.1177/0309524X19849860
  50. Zemamou, M., Toumi, A., Mrigua, K., & Aggour, M. (2019). Modified Design of Savonius Wind Turbine Blade for Performance Improvement. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(1). https://doi.org/10.35940/ijitee.A4202.119119
  51. Zemamou, M., Toumi, A., Mrigua, K., Lahlou, Y., & Aggour, M. (2020). A novel blade design for Savonius wind turbine based on polynomial bezier curves for aerodynamic performance enhancement. International Journal of Green Energy, 17(11), 652‑665. https://doi.org/10.1080/15435075.2020.1779077

Last update:

  1. Unlocking the power of the wind: Innovations in smart hybrid vertical axis wind turbines

    Elysa Nensy Irawan, Kai Shibuya, Ken-Ichiro Yamashita, Goro Fujita. International Journal of Renewable Energy Development, 13 (5), 2024. doi: 10.61435/ijred.2024.60354
  2. Numerical Investigation on Aerodynamic Performance of Helical Savonius Rotor Inspired by Natural Shapes

    Pramodkumar M. Bagade, Preeti P. Bagade, Ashish Chaudhari, Prabhat Ranjan, Samartha Shirke, Chetankumar Sedani. Journal of Mines, Metals and Fuels, 2023. doi: 10.18311/jmmf/2023/35859

Last update: 2024-12-05 16:53:45

No citation recorded.