skip to main content

Planning for Small-Scale Business (USK) Batik Wastewater Treatment Plant X Yogyakarta

Intan Rahmalia  -  Universitas Pertamina, Indonesia
Farhan Muhammad Hilmi  -  Universitas Pertamina, Indonesia
Iva Yenis Septiariva  -  Universitas Sebelas Maret, Indonesia
Reifaldy Tsany Betta Aryanto  -  Universitas Pertamina, Indonesia
Sri Dewi Handayani  -  Universitas Pertamina, Indonesia
Yesaya Emeraldy Priutama  -  Universitas Pertamina, Indonesia
Ariyanti Sarwono  -  Universitas Pertamina, Indonesia
*I Wayan Koko Suryawan orcid scopus  -  Universitas Pertamina, Indonesia

Citation Format:
Abstract

Small scale business / Usaha Skala Kecil (USK) X currently does not have a batik wastewater treatment unit. This condition causes the possibility of contamination to water bodies. USK X wastewater treatment applications' planning needs to be carried out sustainably, namely by reusing water. The process units needed in this planning are the sequencing batch reactor (SBR) and constructed wetlands. The effluent of textile wastewater with this system for parameters BOD, COD, TSS, sulfide, total oil & fat, and color were 0.13 mg/L; 106.5 mg/L; 2.4 mg/L; 0.036 mg/L; 0.07 mg/L; and 90.67 PtCo, respectively. The dimensions of the SBR unit required are 0.75 x 0.6 x 1 m. Modification of the SBR unit uses an ozone generator to produce ozone gas which functions as oxidation of organic pollutants and colors in batik waste. After processing in the SBR unit, it is carried out using a constructed wetland with 2.56 m2.

Fulltext View|Download
Keywords: Batik wastewater; constructed wetland; sequencing batch reactor (SBR); textile

Article Metrics:

  1. Abdulgani, H., Izzati, M., & Sudarno. 2014. Kemampuan tumbuhan typha angustifolia dalam sistem subsurface flow constructed. BIOMA, 90-101
  2. Abkenar, P. P., Iman-Eini, H., Samimi, M. H., & Bagheri, A. (2019, February). An ozone generator power supply for water purification. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC) (pp. 383-388). IEEE
  3. Apritama, M., Suryawan, I., Afifah, A. S., & Septiariva, I. Y. 2020. Phytoremediationof effluent textile wwtp for NH3-N and Cu reduction using pistia stratiotes. Plant Archives, 20(Supplement 1), 2384-2388
  4. Balai Besar Kerajinan dan Batik. 2010. Retrieved from kementerian perindustrian republik indonesia
  5. Cahyana, G. H., & Aulia, A. N. 2019. Pengolahan air limbah rumah sakit menggunakan horizontal subsurface flow constructed wetland. EnviroSan: Vol. 2, Nomor 2, 58-64
  6. Dewanti, B. S., Prastiwi, T. F., & Haji, A. T. 2019. Pengolahan limbah cair batik menggunakan kombinasi metode netralisasi dan elektrokoagulasi. Jurnal Rekayasa dan Manajemen Agroindustri, 358-369
  7. Djumanto, D., Probosunu, N., & Ifriansyah, R. 2013. Indek biotik famili sebagai indikator kualitas air sungai gajahwong yogyakarta. Jurnal Perikanan Universitas Gadjah Mada, 15(1), 26-34
  8. Fadhilah, N., Vembrio, L. A. W., Safira, R. H., Amiruddin, A., Sofiyah, E. S., & Suryawan, I. 2020. Modifikasi unit proses dalam peningkatan efisiensi penyisihan amonium. Jurnal Sumberdaya Alam dan Lingkungan, 7(2), 1-10
  9. Indrayani, L. 2018. pengolahan limbah cair industri batik sebagai salah satu percontohan ipal batik di yogyakarta. Ecotrophic, 173-184
  10. Indrayani, L., & Triwiswara, M. 2018. Efektivitas pengolahan limbah cair industri batik dengan teknologi lahan basah buatan. Dinamika Kerajinan dan Batik, 53-66
  11. Khiatuddin, M. 2010. Melestarikan sumber daya air dengan teknologi rawa buatan. edisi kedua.yogyakarta: Gajah Mada University Press
  12. Marlina, N., Brontowiyono, W., & Chasna, R. 2020. Analisis kualitas air dan daya tampung sungai dengan metode qual2kw (studi kasus: sungai code, yogyakarta). Jurnal Serambi Engineering, 5(4)
  13. Metcalf, & Eddy. 2014. Wastewater engineering: treatment and resource recovery. 5th Edition. New York: McGraw-Hill
  14. Mitchell, C., Wiese, R., & Young, R. 1998. Design of wastewater wetlands in the constructed wetland manual Vol. 2. New South Wales, Australia: Department of Land and Water Conservation
  15. Sari, M. M., Hartini, S., & Sudarno. 2015. Pemilihan desain instalasi pengelolaan air limbah batik yang efektif dan efisien dengan menggunakan metode life cycle cost. Jurnal Teknik Industri Universitas Diponegoro, 27-32
  16. Sastrawijaya, A. T. 1991. Pencemaran lingkungan. Surabaya: Penerbit Rineka Cipta
  17. Septiariva, I. Y., & Sarwono, A. 2021. Reactive Black 5 (RB5): Pengolahan air limbah tekstil dengan adsorbsi menggunakan powdered karbon aktif. Jurnal Teknologi Lingkungan, 22(2), 199-205
  18. Sudewo, A. R. 2016. Hybrid constructed wetland (hcw) sebagai upaya pengolahan air limbah domestik pada pemukiman padat penduduk di daerah bantaran sungai (studi kasus: kejayan gebang kelurahan gebang putih surabaya). Surabaya: Institut Teknologi Sepuluh Nopember
  19. Suryawan, I. W. K., Prajati, G., Afifah, A. S., & Apritama, M. R. 2021. NH3-N and COD reduction in Endek (Balinese textile) wastewater by activated sludge under different DO condition with ozone pre-treatment. Walailak Journal of Science and Technology (WJST)
  20. Suryawan, I., Siregar, M. J., Prajati, G., & Afifah, A. S. 2019. Integrated ozone and anoxic-aerobic activated sludge reactor for endek (balinese textile) wastewater treatment. Journal of Ecological Engineering, 20(7)
  21. Sutardi, A., Suprayogi, S., & Adji, T. N. 2017. Kajian kualitas air tanah bebas antara sungai kuning dan sungai tepus di kecamatan ngemplak, yogyakarta, indonesia. Majalah Geografi Indonesia, 31(1), 31-38
  22. Taylor, G. 2011. Right sizing the design of ozone generator for multiple plant upgrades in orlando. Florida Water Resources Journal, 10-19

Last update:

No citation recorded.

Last update:

No citation recorded.