skip to main content

HOMER optimization of standalone PV/Wind/Battery powered hydrogen refueling stations located at twenty selected French cities

Physics Department, Faculty of Science, Al-Baha University, Al-Baha P.O. Box 1988, Saudi Arabia

Received: 16 Aug 2023; Revised: 5 Oct 2023; Accepted: 20 Oct 2023; Available online: 22 Oct 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The current study proposes a model of autonomous Hydrogen Refuelling Stations (HRFS) installed on different sites in twenty French cities powered by renewable clean energy sources. The station is fully powered by photovoltaic (PV) panels, wind turbines with battery storage and involving an electrolyzer and hydrogen tank for producing and storing hydrogen. Using Homer simulation, three scenarios are investigated to propose an optimized model, namely Scenario 1 containing (PV-Wind-Battery) system, Scenario 2 with (Wind-Battery) technologies and Scenario 3 with (PV-Battery) components. The otimization process executed demonstrates very competitive levelized cost of energy (LCOE) and levelized cost of hydrogen (LCOH) especially for the third scenario solely based on PV power with LCOE in range $0.354-0.435/kWh and a LCOH varying within $13.5-16.5/kg, for all 20 cities. An average net present cost (NPC) value of $ 1,561,429 and $ 2,522,727 are predicted for the first and second architectures while least net present cost of $1,038,117 is estimated for the third combination solely based on solar power according to all sites considered. For instance, minimum values are obtained for Marseille city with LCOE=$ 0.354/kWh and a LCOH=$ 13.5 /kg in conformity with the minimum obtained value of NPC value of $886,464 with respect to the winner third scenario. In addition, more costly hydrogen production is expected for Grenoble city especially for scenario 1 and 2 where wind turbine technology is introduced. On another hand, thorough analysis of PV/wind hydrogen techno-economic operation is provided including improvements recommendations, scenarios comparison and environmental impact discussion.

Fulltext View|Download
Keywords: Hydrogen refuelling station, Renewable resources, techno-economic analysis, HOMER software, Levelized cost of hydrogen

Article Metrics:

  1. Abad, A. V., & Dodds, P. E. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138, 111300. https://doi.org/10.1016/j.enpol.2020.111300
  2. Akhtari, M. R., & Baneshi, M. (2019). Techno-economic assessment and optimization of a hybrid renewable co-supply of electricity, heat and hydrogen system to enhance performance by recovering excess electricity for a large energy consumer. Energy Conversion and Management, 188, 131-141. https://doi.org/10.1016/j.enconman.2019.03.067
  3. Alsafasfeh, Q. H. (2015). Performance and feasibility analysis of a grid interactive large scale wind/PV hybrid system based on smart grid methodology case study South Part-Jordan. International Journal of Renewable Energy Development, 4(1), 39-47. https://doi.org/10.14710/ijred.4.1.39-47
  4. Alshammari, N., Samy, M. M., & Asumadu, J. (2018, December). Optimal economic analysis study for renewable energy systems to electrify remote region in Kingdom of Saudi Arabia. In 2018 Twentieth International Middle East Power Systems Conference (MEPCON) (pp. 1040-1045). IEEE. https://doi.org/10.1109/MEPCON.2018.8635287
  5. Ariae, A. R., Jahangiri, M., Fakhr, M. H., & Shamsabadi, A. A. (2019). Simulation of Biogas Utilization Effect on The Economic Efficiency and Greenhouse Gas Emission: A Case Study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149-160. https://doi.org/10.14710/ijred.8.2.149-160
  6. Ayop, R., Isa, N. M., & Tan, C. W. (2018). Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renewable and Sustainable Energy Reviews, 81, 2731-2743. https://doi.org/10.1016/j.rser.2017.06.079
  7. Ayodele, T. R., Mosetlhe, T. C., Yusuff, A. A., & Ntombela, M. (2021). Optimal design of wind-powered hydrogen refuelling station for some selected cities of South Africa. International Journal of Hydrogen Energy, 46(49), 24919-24930. https://doi.org/10.1016/j.ijhydene.2021.05.059
  8. Barakat, S., Samy, M. M., Eteiba, M. B., & Wahba, W. I. (2016, December). Viability study of grid connected PV/Wind/Biomass hybrid energy system for a small village in Egypt. In 2016 eighteenth international Middle East power systems conference (MEPCON) (pp. 46-51). IEEE. https://doi.org/10.1109/MEPCON.2016.7836870
  9. Barakat, S., Emam, A., & Samy, M. M. (2022). Investigating grid-connected green power systems’ energy storage solutions in the event of frequent blackouts. Energy Reports, 8, 5177-5191. https://doi.org/10.1016/j.egyr.2022.03.201
  10. Bartolucci, L., Cordiner, S., Mulone, V., Tatangelo, C., Antonelli, M., & Romagnuolo, S. (2023). Multi-hub hydrogen refueling station with on-site and centralized production. International Journal of Hydrogen Energy, 48(54), 20861-20874. https://doi.org/10.1016/j.ijhydene.2023.01.094
  11. Cao, S. (2016). Comparison of the energy and environmental impact by integrating a H2 vehicle and an electric vehicle into a zero-energy building. Energy Conversion and Management, 123, 153-173. https://doi.org/10.1016/j.enconman.2016.06.033
  12. Chau, M. Q., & Le, T. H. (2022). A review on the role and impact of typical alcohol additives in controlling emissions from diesel engines. International Journal of Renewable Energy Development, 11(1), 221-236. https://doi.org/10.14710/ijred.2022.42263
  13. Çetinbaş, İ., Tamyurek, B., & Demirtaş, M. (2019). Design, analysis and optimization of a hybrid microgrid system using HOMER software: Eskisehir osmangazi university example. International Journal of Renewable Energy Development, 8(1), 65-79. https://doi.org/10.14710/ijred.8.1.65-79
  14. Chouaib, A., Messaoud, H., & Salim, M. (2017). Sizing and Optimization for Hybrid Central in South Algeria Based on Three Different Generators. International Journal of Renewable Energy Development, 6(3), 263-272. https://doi.org/10.14710/ijred.6.3.263-272
  15. Martínez de León, C., Ríos, C., & Brey, J. J. (2023). Cost of green hydrogen: limitations of production from a stand-alone photovoltaic system. International Journal of Hydrogen Energy, 48(32), 11885-11898. https://doi.org/10.1016/j.ijhydene.2022.05.090
  16. Diyoke, C., Egwuagu, M. O., Onah, T. O., Ugwu, K. C., & Dim, E. C. (2023). Comparison of the Grid and Off-Grid Hybrid Power Systems for Application in University Buildings in Nigeria. International Journal of Renewable Energy Development, 12(2), 348-365. https://doi.org/10.14710/ijred.2023.49814
  17. Dincer I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. Int J Hydrogen Energy;27: 265-285. https://doi.org/10.1016/S0360-3199(01)00119-7
  18. Duman, A. C., & Güler, Ö. (2018). Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society, 42, 107-126. https://doi.org/10.1016/j.scs.2018.06.029
  19. Dutta, S. (2014). A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry, 20(4), 1148-1156. https://doi.org/10.1016/j.jiec.2013.07.037
  20. Eberle, U., Müller, B., & Von Helmolt, R. (2012). Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy & Environmental Science, 5(10), 8780-8798. https://doi.org/10.1039/C2EE22596D
  21. Eteiba, M. B., Barakat, S., Samy, M. M., & Wahba, W. I. (2018). Optimization of an off-grid PV/Biomass hybrid system with different battery technologies. Sustainable cities and society, 40, 713-727. https://doi.org/10.1016/j.scs.2018.01.012
  22. El-Emam, R. S., Ezzat, M. F., & Khalid, F. (2022). Assessment of hydrogen as a potential energy storage for urban areas’ PV-assisted energy systems–Case study. International Journal of Hydrogen Energy. 47(62), 26209-26222. https://doi.org/10.1016/j.ijhydene.2022.01.107
  23. El Hassani, S., Oueslati, F., Horma, O., Santana, D., Moussaoui, M. A., & Mezrhab, A. (2023). Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco. Journal of Energy Storage, 68, 107853. https://doi.org/10.1016/j.est.2023.107853
  24. Elgowainy, A., Reddi, K., Lee, D. Y., Rustagi, N., & Gupta, E. (2017). Techno-economic and thermodynamic analysis of pre-cooling systems at gaseous hydrogen refueling stations. International journal of hydrogen energy, 42(49), 29067-29079. https://doi.org/10.1016/j.ijhydene.2017.09.087
  25. First hydrogen station in France with ‘green’ onsite production, Fuel Cells Bulletin, Volume 2017, Issue 5, 2017, Pages 8-9, ISSN 1464-2859, https://doi.org/10.1016/S1464-2859(17)30188-8
  26. France-hydrogene, https://www.france-hydrogene.org/ 2022 [accessed 18 August 2022]
  27. Gardner, D. (2009). Hydrogen production from renewables. Renewable Energy Focus, 9(7), 34-37. https://doi.org/10.1016/S1755-0084(09)70036-5
  28. Gebre, T., & Gebremedhin, B. (2019). The mutual benefits of promoting rural-urban interdependence through linked ecosystem services. Global ecology and conservation, 20, e00707. https://doi.org/10.1016/j.gecco.2019.e00707
  29. Genovese, M., & Fragiacomo, P. (2022). Hydrogen station evolution towards a poly-generation energy system. International Journal of Hydrogen Energy, 47(24), 12264-12280. https://doi.org/10.1016/j.ijhydene.2021.06.110
  30. Gil, L., & Bernardo, J. (2020). An approach to energy and climate issues aiming at carbon neutrality. Renewable Energy Focus, 33, 37-42. https://doi.org/10.1016/j.ref.2020.03.003
  31. Güven, A. F., & Samy, M. M. (2022). Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Conversion and Management, 269, 116058. https://doi.org/10.1016/j.enconman.2022.116058
  32. Gökçek, M., & Kale, C. (2018a). Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for İzmir-Çeşme. International Journal of Hydrogen Energy, 43(23), 10615-10625. https://doi.org/10.1016/j.ijhydene.2018.01.082
  33. Gökçek, M., & Kale, C. (2018b). Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system. Energy Conversion and Management, 161, 215-224. https://doi.org/10.1016/j.enconman.2018.02.007
  34. Guilbert, D., & Vitale, G. (2021). Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon. Clean Technologies, 3(4), 881-909. https://doi.org/10.3390/cleantechnol3040051
  35. HOMER energy n.d. < https://homerenergy.com/index.html > (accessed 17 October, 2023)
  36. Hassane, A. I., Didane, D. H., Tahir, A. M., Mouangue, R. M., Tamba, J. G., & Hauglustaine, J. M. (2022). Comparative analysis of hybrid renewable energy systems for off-grid applications in Chad. International Journal of Renewable Energy Development, 11(1), 49-62. https://doi.org/10.14710/ijred.2022.39012
  37. Herez, A., El Hage, H., Lemenand, T., Ramadan, M., & Khaled, M. (2021). Parabolic trough Photovoltaic/Thermal hybrid system: Thermal modeling, case studies, and economic and environmental analyzes. Renewable Energy Focus, 38, 9-21. https://doi.org/10.1016/j.ref.2021.05.001
  38. Islam, M. S. (2018). A techno-economic feasibility analysis of hybrid renewable energy supply options for a grid-connected large office building in southeastern part of France. Sustainable cities and society, 38, 492-508. https://doi.org/10.1016/j.scs.2018.01.022
  39. Khamharnphol, R., Kamdar, I., Waewsak, J., Chaichan, W., Khunpetch, S., Chiwamongkhonkarn, S., ... & Gagnon, Y. (2023). Microgrid Hybrid Solar/Wind/Diesel and Battery Energy Storage Power Generation System: Application to Koh Samui, Southern Thailand. International Journal of Renewable Energy Development, 12(2), 216-226. https://doi.org/10.14710/ijred.2023.47761
  40. Kyjovský, Š., Vávra, J., Bortel, I., & Toman, R. (2023). Drive cycle simulation of light duty mild hybrid vehicles powered by hydrogen engine. International Journal of Hydrogen Energy, 48(44), 16885-16896. https://doi.org/10.1016/j.ijhydene.2023.01.137
  41. Kim, H., Kim, B. I., & Thiel, D. (2021). Exact algorithms for incremental deployment of hydrogen refuelling stations. International Journal of Hydrogen Energy, 46(56), 28760-28774. https://doi.org/10.1016/j.ijhydene.2021.06.104
  42. Lahlou, Y., Hajji, A., & Aggour, M. (2023). Optimization of a Management Algorithm for an Innovative System of Automatic Switching between Two Photovoltaic and Wind Turbine Modes for an Ecological Production of Green Energy. International Journal of Renewable Energy Development, 12(1), 36-45,. https://doi.org/10.14710/ijred.2023.47137
  43. Lee, B., Heo, J., Kim, S., Sung, C., Moon, C., Moon, S., & Lim, H. (2018). Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Conversion and Management, 162, 139-144. https://doi.org/10.1016/j.enconman.2018.02.041
  44. Le Duigou, A., Quéméré, M. M., Marion, P., Menanteau, P., Decarre, S., Sinegre, L., ... & Alleau, T. (2013). Hydrogen pathways in France: results of the HyFrance3 project. Energy policy, 62, 1562-1569. https://doi.org/10.1016/j.enpol.2013.06.094
  45. Liu, J., Yang, H., & Zhou, Y. (2021). Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage. Applied Energy, 298, 117206. https://doi.org/10.1016/j.apenergy.2021.117206
  46. Marcoberardino, G. D., Vitali, D., Spinelli, F., Binotti, M., & Manzolini, G. (2018). Green hydrogen production from raw biogas: A techno-economic investigation of conventional processes using pressure swing adsorption unit. Processes, 6(3), 19. https://doi.org/10.3390/pr6030019
  47. Minutillo, M., Perna, A., Forcina, A., Di Micco, S., & Jannelli, E. (2021a). Analyzing the levelized cost of hydrogen in refueling stations with on-site hydrogen production via water electrolysis in the Italian scenario. International Journal of Hydrogen Energy, 46(26), 13667-13677. https://doi.org/10.1016/j.ijhydene.2020.11.110
  48. Mahmoudi, A., Bouaziz, A. M., Bouaziz, M. N., & Saheb-Koussa, D. (2023). Performance analysis of hybrid PV-diesel-storage system in AGRS-Hassi R’mel Algeria. International Journal of Renewable Energy Development, 12(6), 987-997. https://doi.org/10.14710/ijred.2023.54072
  49. Momirlan, M., & Veziroglu, T. N. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International journal of hydrogen energy, 30(7), 795-802. https://doi.org/10.1016/j.ijhydene.2004.10.011
  50. Mokhtara, C., Negrou, B., Settou, N., Settou, B., & Samy, M. M. (2021). Design optimization of off-grid Hybrid Renewable Energy Systems considering the effects of building energy performance and climate change: Case study of Algeria. Energy, 219, 119605. https://doi.org/10.1016/j.energy.2020.119605
  51. Minutillo, M., Perna, A., Di Trolio, P., Di Micco, S., & Jannelli, E. (2021b). Techno-economics of novel refueling stations based on ammonia-to-hydrogen route and SOFC technology. International Journal of Hydrogen Energy, 46(16), 10059-10071. https://doi.org/10.1016/j.ijhydene.2020.03.113
  52. Ministère de la Transition Ecologique et Solidaire. (2018). Plan de déploiement de l’hydrogène pour la transition énergétique. https://www.ecologique-solidaire.gouv.fr/sites/default/files/Plan_deploiement_hydrogene.pdf [accessed 17 October 2023]
  53. Milosavljević, D. D., Kevkić, T. S., & Jovanović, S. J. (2022). Review and validation of photovoltaic solar simulation tools/software based on case study. Open Physics, 20(1), 431-451. https://doi.org/10.1515/phys-2022-0042
  54. Missoum, M., & Loukarfi, L. (2021). Investigation of a Solar Polygeneration System for a MultiStorey Residential Building-Dynamic Simulation and Performance Analysis. International Journal of Renewable Energy Development, 10(3), 445-458. https://doi.org/10.14710/ijred.2021.34423
  55. Mokheimer, E. M., Al-Sharafi, A., Habib, M. A., & Alzaharnah, I. (2015). A new study for hybrid PV/wind off-grid power generation systems with the comparison of results from homer. International Journal of Green Energy, 12(5), 526-542. https://doi.org/10.1080/15435075.2013.833929
  56. Mohammed, O. H., Amirat, Y., & Benbouzid, M. (2019). Particle swarm optimization of a hybrid wind/tidal/PV/battery energy system. Application to a remote area in Bretagne, France. Energy Procedia, 162, 87-96. https://doi.org/10.1016/j.egypro.2019.04.010
  57. Narayanan, M. (2017). Techno-economic analysis of solar absorption cooling for commercial buildings in India. International Journal of Renewable Energy Development, 6(3), 253-262. https://doi.org/10.14710/ijred.6.3.253-262
  58. Navas, S. J., González, G. C., & Pino, F. J. (2022). Hybrid power-heat microgrid solution using hydrogen as an energy vector for residential houses in Spain. A case study. Energy Conversion and Management, 263, 115724. https://doi.org/10.1016/j.enconman.2022.115724
  59. Nistor, S., Dave, S., Fan, Z., & Sooriyabandara, M. (2016). Technical and economic analysis of hydrogen refuelling. Applied Energy, 167, 211-220. http://dx.doi.org/10.1016/j.apenergy.2015.10.094
  60. Nono Seutche, R. V., Sawadogo, M., & Nkamleu Ngassam, F. (2021). Valuation of CO2 emissions reduction from renewable energy and energy efficiency projects in Africa: a case study of Burkina Faso. International Journal of Renewable Energy Development, 10 (4), 713-729. https://doi.org/10.14710/ijred.2021.34566
  61. Oladeji, A. S., Akorede, M. F., Aliyu, S., Mohammed, A. A., & Salami, A. W. (2021). Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. International Journal of Renewable Energy Development, 10(4), 667-686. https://doi.org/10.14710/ijred.2021.31316
  62. Oueslati, F. (2021). Hybrid renewable system based on solar wind and fuel cell energies coupled with diesel engines for Tunisian climate: TRNSYS simulation and economic assessment. International Journal of Green Energy, 18(4), 402-423. https://doi.org/10.1080/15435075.2020.1865366
  63. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  64. Pan, X., Li, Z., Zhang, C., Lv, H., Liu, S., & Ma, J. (2016). Safety study of a wind–solar hybrid renewable hydrogen refuelling station in China. International Journal of Hydrogen Energy, 41(30), 13315-13321. https://doi.org/10.1016/j.ijhydene.2016.05.180
  65. Panayiotou, G., Kalogirou, S., & Tassou, S. (2012). Design and simulation of a PV and a PV–Wind standalone energy system to power a household application. Renewable Energy, 37(1), 355-363. https://doi.org/10.1016/j.renene.2011.06.038
  66. Perna, A., Minutillo, M., Di Micco, S., & Jannelli, E. (2022). Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations. Energies, 15(2), 541. https://doi.org/10.3390/en15020541
  67. Perna, A., Minutillo, M., Di Micco, S., Cigolotti, V., Pianese, A. (2020). Ammonia as hydrogen carrier for realizing distributed onsite refueling stations implementing PEMFC technology. In Proceedings of the E3S Web of Conferences, Kenitra, Morocco. EDP Sciences 197, 05001. https://doi.org/10.1051/e3sconf/202019705001
  68. Perna, A., Minutillo, M., Di Micco, S., Di Trolio, P., Jannelli, E. (2019). Biogas and ammonia as hydrogen vectors for small refueling stations: Techno-economic assessment. AIP Conf. Proc., 2191, 020127. https://doi.org/10.1063/1.5138860
  69. Rezk, H., Kanagaraj, N., & Al-Dhaifallah, M. (2020). Design and sensitivity analysis of hybrid photovoltaic-fuel-cell-battery system to supply a small community at Saudi NEOM city. Sustainability, 12(8), 3341. https://doi.org/10.3390/su12083341
  70. Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and greenhouse gas emissions. Our world in data. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed October 17, 2023)
  71. Samy, M. M., Barakat, S., & Ramadan, H. S. (2019). A flower pollination optimization algorithm for an off-grid PV-Fuel cell hybrid renewable system. International Journal of Hydrogen Energy, 44(4), 2141-2152. https://doi.org/10.1016/j.ijhydene.2018.05.127
  72. Samy, M. M., Emam, A., Tag-Eldin, E., & Barakat, S. (2022). Exploring energy storage methods for grid-connected clean power plants in case of repetitive outages. Journal of Energy Storage, 54, 105307. https://doi.org/10.1016/j.est.2022.105307
  73. Samy, M. M., Sarhan, H. H., Barakat, S., & Al-Ghamdi, S. A. (2018, June). A hybrid pv-biomass generation based micro-grid for the irrigation system of a major land reclamation project in kingdom of saudi arabia (ksa)-case study of albaha area. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-8). IEEE. https://doi.org/10.1109/EEEIC.2018.8494543
  74. Samy, M. M., & Barakat, S. (2019, December). Hybrid invasive weed optimization-particle swarm optimization algorithm for biomass/PV micro-grid power system. In 2019 21st international Middle East power systems conference (MEPCON) (pp. 377-382). IEEE. https://doi.org/10.1109/MEPCON47431.2019.9008156
  75. Samy, M. M., Mosaad, M. I., El-Naggar, M. F., & Barakat, S. (2020). Reliability support of undependable grid using green energy systems: Economic study. IEEE Access, 9, 14528-14539. https://doi.org/10.1109/ACCESS.2020.3048487
  76. Sharma, S., & Ghoshal, S. K. (2015). Hydrogen the future transportation fuel: From production to applications. Renewable and sustainable energy reviews, 43, 1151-1158. https://doi.org/10.1016/j.rser.2014.11.093
  77. Sims, R. E. (2004). Renewable energy: a response to climate change. Solar energy, 76(1-3), 9-17. https://doi.org/10.1016/S0038-092X(03)00101-4
  78. Siyal, S. H., Mentis, D., & Howells, M. (2015). Economic analysis of standalone wind-powered hydrogen refueling stations for road transport at selected sites in Sweden. International Journal of Hydrogen Energy, 40(32), 9855-9865. https://doi.org/10.1016/j.ijhydene.2015.05.021
  79. Tang, O., Rehme, J., & Cerin, P. (2022). Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?. Energy, 241, 122906. https://doi.org/10.1016/j.energy.2021.122906
  80. Tazay, A. F., Samy, M. M., & Barakat, S. (2020). A techno-economic feasibility analysis of an autonomous hybrid renewable energy sources for university building at Saudi Arabia. Journal of Electrical Engineering & Technology, 15, 2519-2527. https://doi.org/10.1007/s42835-020-00539-x
  81. Tlili, O., Mansilla, C., Linβen, J., Reuss, M., Grube, T., Robinius, M., ... & Stolten, D. (2020). Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains. International journal of hydrogen energy, 45(4), 3053-3072. https://doi.org/10.1016/j.ijhydene.2019.11.006
  82. TÜV SÜD . (2022) “Hydrogen refuelling stations worldwide”. TÜV SÜD Industrie Service, [Online]. Available: https://www.h2stations.org/?Continent=EU&StationID=-1 [accessed 18 August 2022]
  83. Ulleberg, Ø., & Hancke, R. (2020). Techno-economic calculations of small-scale hydrogen supply systems for zero emission transport in Norway. international journal of hydrogen energy, 45(2), 1201-1211. https://doi.org/10.1016/j.ijhydene.2019.05.170
  84. Viktorsson, L., Heinonen, J. T., Skulason, J. B., & Unnthorsson, R. (2017). A step towards the hydrogen Economy—A life cycle cost analysis of A hydrogen refueling station. Energies, 10(6), 763. https://doi.org/10.3390/en10060763
  85. Wu, W., & Skye, H. M. (2021). Residential net-zero energy buildings: Review and perspective. Renewable and Sustainable Energy Reviews, 142, 110859. https://doi.org/10.1016/j.rser.2021.110859
  86. Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E., Lantz, E., & Gilman, P. (2021). Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nature Energy, 6(5), 555-565. https://doi.org/10.1038/s41560-021-00810-z
  87. Zhao, L., & Brouwer, J. (2015). Dynamic operation and feasibility study of a self-sustainable hydrogen fueling station using renewable energy sources. International journal of hydrogen energy, 40(10), 3822-3837. https://doi.org/10.1016/j.ijhydene.2015.01.044
  88. Zhao, X., Mu, H., Li, N., Shi, X., Chen, C., & Wang, H. (2023). Optimization and analysis of an integrated energy system based on wind power utilization and on-site hydrogen refueling station. International Journal of Hydrogen Energy, 48(57), 21531-21543. https://doi.org/10.1016/j.ijhydene.2023.03.056
  89. Zwalnan, S. J., Duvuna, G. A., Abakr, Y. A., & Banda, T. (2021). Design and Performance Evaluation of a Multi-Temperature Flat Plate Solar Collector. International Journal of Renewable Energy Development, 10(3), 537-549. https://doi.org/10.14710/ijred.2021.33213

Last update:

  1. Optimal Sizing of Renewable Energy Powered Hydrogen and Electric Vehicle Charging Station (HEVCS)

    Sekar Palanisamy, Himadri Lala. IEEE Access, 12 , 2024. doi: 10.1109/ACCESS.2024.3383960
  2. Technical feasibility and financial assessment of autonomous hydrogen refuelling stations fully supplied by mixed renewable energy systems for twenty selected sites located in France

    Fakher Oueslati, Narjess Toumi. Environment, Development and Sustainability, 2024. doi: 10.1007/s10668-024-04872-3
  3. Optimal techno-economic design of PV-wind hydrogen refueling stations (HRFS) for 20 selected Saudi sites

    Fakher Oueslati, Salwa Fezai. Wind Engineering, 2024. doi: 10.1177/0309524X241247229

Last update: 2024-04-30 21:44:15

No citation recorded.