skip to main content

Comparative Study of the Thermal Performance of Two Thermosiphon Solar Water Heaters System

1Laboratoire des Sciences de la Matière de l’Environnement et de l’Energie Solaire, UFR SSMT, Université Félix Houphouët Boigny, , Côte d'Ivoire

222 B.P. 582 Abidjan 22,, Côte d'Ivoire

3Laboratoire d’Energies Nouvelles et Renouvelables, UMRI 58, Institut National Polytechnique Félix Houphouët Boigny, B.P. 581 Yamoussoukro, Côte d'Ivoire

Received: 25 May 2020; Revised: 4 Jul 2020; Accepted: 9 Jul 2020; Available online: 11 Jul 2020; Published: 15 Oct 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE) under http://creativecommons.org/licenses/by/4.0.

Citation Format:
Abstract

 The aim of this study is to present the comparative results of experimental investigations of the thermal performance of two thermosiphon solar water heaters system (SWHS). The first uses the coconut fiber (CF), a local vegetable and the second, the glass wool (GW), an imported and expensive material, as thermal insulations. The maximum instantaneous efficiencies are, respectively, 65.30 % and 58.7% with glass wool and coconut fiber while the mass flow rate values are, respectively, 0.0098 kg/s and 0.0078 kg/s with glass wool and coconut fiber. In addition, the calculated average values of F’(τα) and F’UL are, respectively, 0.79 and 5.86 Wm-2°C for the coconut fiber collector and 0.8 and 5.26 Wm-2°C for the glass wool collector. The average heat exchanger effectiveness obtained for the two SWHS are superior to 50%. As an environment-friendly and renewable material, coconut fiber is particularly suitable for thermal insulation in order to save energy. The experimental results show the ability of the constructed solar water heater in providing hot water suitable for maternity, hotels, households and encourage its implementation and utilization on a broad scale. The SWHS can be used in any weather conditions.

Fulltext View|Download
Keywords: Thermal conductivity, Coconut fiber; Glass wool; Heat exchanger; Thermal performance

Article Metrics:

  1. Abdullah, A.H., Abou-Zian, H.Z., Ghoneim, A.A. (2003) Thermal performance of plate solar collector using various arrangements of compound honeycomb. Energy Conversion and Management, 44, 3093-3112; doi: 10.1016/S0196-8904(03)00013-X
  2. Al-Homoud, M.S. (2005) Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366; doi: 10.1016/j.buildenv.2004.05.013
  3. Ayompe, L.M., Duffy, A., Mc Keever, M., Conlon, M., McCormack, S.J. (2011) Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate. Energy, 36, 3370-3378; doi: 10.1016/j.energy.2011.03.034
  4. Balaji,K.,Khan, A.I.,Kumar, P.G., Iniyan, S.,Goic,R.(2019). Experimental analysis on free convection effect using two different thermal performance enhancers in absorber tube of a forced circulation flat plate solar water heater. Solar Energy, 185, 445-454; doi: 10.1016/j.solener.2019.04.089
  5. Balotaki, H.K., Saidi, M.H. (2017) Experimental investigation of dual-purpose solar collector using with rectangularchannels.Journal of Thermal Engineering, 3(1), 1052-1059; doi: 10.18186/thermal.290258
  6. Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R.,Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M., Touaba, O. (2020) Status of renewable energy potentialand utilization in Algeria. Journal of Cleaner Production, 246, 119011; doi: 10.1016/j.jclepro.2019.119011
  7. Dagdougui, H., Ouammi, A., Robba, M., Sacile, R. (2011) Thermal analysis and performance optimization of a solar water heater flat plate collector: Application to Tetouan (Morocco). Renewable and Sustainable Energy Reviews, 15, 630-638; doi: 10.1016/j.rser.2010.09.010
  8. Duffie, J.A., Beckman, W.A. (2006) Solar Engineering of Thermal Processes, third ed. Wiley, New York
  9. Esen, M., Esen, H. (2005) Experimental investigation of a two-phase closed thermosiphon solar water heater. Solar Energy, 79, 459-468; doi: 10.1016/j.solener.2005.01.001
  10. Ge, T.S., Dai, Y.J., Li, Y., Wang, R.Z. (2012)Simulation investigation on solar powered desiccant coated heat exchanger cooling system. Applied Energy, 93, 532-540; doi: 10.1016/j.apenergy.2011.11.089
  11. Haltiwanger, J.F., Davidson, J.H. (2009) Discharge of a thermal storage tank using an immersed heat exchanger with an annular baffle. Solar Energy, 83, 193-201; doi: 10.1016/j.solener.2008.07.017
  12. Hang Y., Qu, M., Zhao, F. (2012) Economic and environmental life cycle analysis of solar hot water systems in the United States. Energy and Buildings, 45, 181-188; doi: 10.1016/j.enbuild.2011.10.057
  13. Holman, J.P., Gajda, W.J. (1989) Experimental Method for Engineering, McGraw Hill, New York
  14. Huang, J., Pu, S., Gao, W., Que, Y. (2010) Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger. Energy, 35(9), 3563-3568; doi: 10.1016/j.energy.2010.04.028
  15. Hussein, H.M.S. (2002) Transient investigation of a two Phase closed thermosiphon flat plate solar water heater. EnergyConversion and Management, 43(18), 2479-2492; doi: 10.1016/S0196-8904(01)00186-8
  16. Kalogirou, S. (2009) Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heater. Solar Energy, 83, 39-48; doi: 10.1016/j.solener.2008.06.005
  17. Khalifa, A.J.N., Jabbar, R.A.A. (2010)Conventional Versus storage domestic solar hot water systems: A Comparative performance study. Energy Conversion and Management, 51, 265-270; doi: 10.1016/j.enconman.2009.09.021
  18. Khedari, J., Nankongnab, N., Hirunlabh, J., Teekasap, S. (2004)New low-cost insulation particleboards from mixture of durian peel and coconut coir. Building and Environment, 39(1), 59–65; doi: 10.1016/j.buildenv.2003.08.001
  19. Koffi, E.P.M., Koua, K.B, Gbaha, P., Touré, S. (2014). Thermal performance of a solar water heater with internal exchanger using thermosiphon system in Côte d’Ivoire. Energy, 64(1),187-199; doi: 10.1016/j.energy.2013.09.059
  20. Kreith, F. (1976)Principles of Heat Transfer, 3rd Edn. Harper and Row, New York
  21. Ma, J., Sun, W., Ji, J., Zhang, Y., Zhang, A., Fan W. (2011) Experimental and theoretical study of the efficiency of a dual-function solar collector. Applied Thermal Engineering, 31, 1751-1756; doi: 10.1016/j.applthermaleng.2011.02.019
  22. Mandal, S., Ghosh, S.K., (2020) Experimental investigation of the performance of a double pass solar water heater with reflector. Renewable Energy, 149, 631-640; doi: 10.1016/j.renene.2019.11.160
  23. Manohar, K., Ramlakhan, D., Kochhar, G., Haldar, S. (2006) Biodegradable fibrous thermal insulation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28 (1), 45-47; doi: 10.1590/S1678-58782006000100005
  24. Mertol, A., Place, W., Webster, T. (1981) Detailed loop model (DLM) analysis of liquid solar thermosiphons with heat exchangers. Solar Energy, 27(5), 367-386. doi: 10.1016/0038-092X(81)90002-5
  25. Mnasri, F., Bahria, S., Slimani, M.E.A., Lahoucine, O., El Ganaoui, M.(2020) Building incorporated bio-based materials: experimental and numerical study
  26. Panyakaew, S., Fotios, S. (2011) New thermal insulation Boards made from coconut husk and bagasse. Energy and Buildings, 43, 1732-1739; doi: 10.1016/j.enbuild.2011.03.015
  27. Rezk, H., Gomaa, M.R., Marmoush M.M., Shehata, N., Henry, J. (2019) Theoretical and experimental performance investigation of a newly combined TDD and SWH system. Applied Thermal Engineering, 161: 114156; doi: 10.1016/j.applthermaleng.2019.114156
  28. Sakhrieh, A., Al-Ghandoor, A. (2013) Experimental Investigation of the performance of five types of solar collectors. Energy Conversion and Management,65, 715-720; doi: 10.1016/j.enconman.2011.12.038
  29. Touaba, O., AitCheikh M.S., Slimani M.E-A., Bouraiou, A., Ziane, A., Necaibia, A., Harmim, A. (2020) Experimental investigation of solar water heater Equipped with a solar collector using waste oil as absorber and working fluid. Solar Energy, 199, 630-644; doi: 10.1016/j.solener.2020.02.064
  30. Tse, K.K., Chow, T.T. (2015) Dynamic model and experimental validation of an indirect thermosyphon solar water heater coupled with a parallel circular tube rings type heat exchange coil. Solar Energy, 114, 114-133; doi: 10.1016/j.solener.2015.01.032
  31. Wellinger, K., Messungen, K.W. (1982) An Wärmetauschen K R. In “Erträge von Sonnenenergieanlagen“, Tagungsbericht, Brugg-Windish, zusammengestellt von J.M. Suter und J. Keller
  32. Xu, J.Y., Sugawara, R., Widyorini, R., Han, G.P., Kawai, S. (2004) Manufacture and properties of low-Density Binderless particleboard from kenaf core. Journal of Wood Science, 50(1), 62-67; doi: 10.1007/s10086-003-0522-1
  33. Yassen, T.A., Mokhlif, N.D., Eleiwi, M.A. (2019) Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use. Renewable Energy, 138, 852-860; doi: 10.1016/j.renene.2019.01.114
  34. Zhou, X.Y., Li, J., Zhou, D.G. (2004)Thermal transfer properties of low density wheat strawboard. Journal of Nanjing Forestry University (Natural Sciences Edition), 28 (6), 1-4
  35. Zhou, X.Y., Zheng, F., Li, H.G., Lu, C.L. (2010)An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, 42(7), 1070-1074; doi: 10.1016/j.enbuild.2010.01.020
  36. Zou, N.Y. (2008). Thermal Insulation Materials for Wall and Roof,Chemical Industry Publish House, Beijing. Journal of Building Engineering, 28:101088; doi: 10.1016/j.jobe.2019.101088

Last update:

  1. Enhancement of Freshwater Production using Coir Fibre in Single Slope Solar Still

    Kumaravel. S, Nagaraj. M, Bharathiraja. G. 2023 International Conference on Inventive Computation Technologies (ICICT), 2023. doi: 10.1109/ICICT57646.2023.10134125
  2. CFD analysis of the earth air pipe heat exchanger with helical geometry for optimum space utilisation

    Mahendra Kumar Verma, Vikas Bansal. International Journal of Ambient Energy, 44 (1), 2023. doi: 10.1080/01430750.2022.2120907

Last update: 2024-04-24 00:25:21

No citation recorded.